
On Warren’s Method for
Functional Programming in Logic

M.H.M. Cheng, M.H. van Emden, and B.E. Richards
Department of Computer Science
University of Victoria
Victoria, B.C. V8W 2Y2 Canada
mcheng@csr.UVic.ca

Abstract

Although Warren’s method for the evaluation in Prolog of expressions with
higher-order functions appears to have been neglected, it is of great value.
Warren’s paper needs to be supplemented in two respects. He showed ex-
amples of a translation from λ expressions to clauses, but did not present
a general method. Here we present a general translation program and
prove it correct with respect to the axioms of equality and those of the
λ-calculus. Warren’s paper only argues in general terms that a structure-
sharing Prolog implementation can be expected to efficiently evaluate the
result of his translation. We show a comparison of timings between lisp
and a structure-copying implementation of Prolog. The result suggests that
Warren’s method is about as efficient as the Lisp method for the evaluation
of λ expressions involving higher-order functions.

1 Introduction

In [10] Warren discussed whether higher-order features are needed in Prolog.
We are concerned with the first half of the paper, which considers functions
and relations that are higher-order in the sense of Lisp and other languages
for functional programming. In this paper, as in Warren’s, “higher-order”
means that functions can be referred to as objects, a usage that is different
from the one exemplified by “higher-order logic”.

Warren presents a way of translating λ expressions to clauses and claims
that this translation makes λ expressions superfluous because

• they are unlikely to result in more efficient compilation, and

• they are “mere syntactic sugar” ([10, page 447]).

As for the first point, Warren explains that his translation allows a
structure-sharing implementation of Prolog to efficiently represent the clo-
sures needed for higher-order functions. His conclusion ([10, page 448]):

So, for DEC-10 Prolog at least, providing a specific implemen-
tation for higher-order objects would not provide huge efficiency

gains over the approach I am advocating, and for most programs
the overall improvement would probably be negligible.

It would have been instructive to compare the efficiency of Warren’s trans-
lation of

t : t : t : t : succ : 0 where t = λf. λx. f : (f : x)

evaluated in DEC-10 Prolog with the corresponding evaluation in Lisp,
which, after all, does have “specific implementations for higher-order ob-
jects”. (Here : is left-associative and denotes function application. The
function t is often referred to as ’twice’ because it takes a function and an
argument and applies the function to the argument twice.) As access to
DEC-10 Prolog is hard to get nowadays, we had to settle for a structure-
copying rather than a structure-sharing implementation of Prolog. Warren’s
argument for the appropriateness of Prolog does not apply to a structure-
copying implementation. Yet Warren’s translation is evaluated about as fast
as what we believe is the corresponding expression in Lisp. See Appendix B
for timings and other details.

When the relative merits of Lisp and Prolog are discussed, it is often
conceded that Prolog is better in several respects, but that its weak point
is in handling functions. As a result there is much interest in amalgamating
functional and logic programming. We suspect that these discussions and
activities have proceeded in ignorance of Warren’s paper, or at least of its
true implications. The Science Citation Index, admittedly bad in its coverage
of logic programming, lists no references to the paper during the first five
years after its publication; for 1988 two references are listed.

The unwarranted neglect of Warren’s paper may be due in part to its
dismissal of λ expressions as “mere syntactic sugar”. Warren translated

t : t : t : t : succ : 0 where t = λf. λx. f : (f : x)

to

apply(t,F,t(F)).
apply(t(F),X,R) :- apply(F,X,U),apply(F,U,R).

?-apply(t,t,U), apply(U,t,V), apply(V,t,W),
apply(W,succ,X), apply(X,0,Ans)

apparently preferring the latter notation. The clauses correspond to the
definition of t, and the query to the expression t : t : t : t : succ : 0.

We suspect that his paper would have made a big impact if Warren
had presented the principles behind his translation from λ expressions to
clauses and if he had shown that his method evaluates expressions involving
higher-order functions as fast as a language with “specific implementations
for higher-order objects”.

It is our goal to supply what is missing from Warren’s paper. We have
already pointed out that his method is fast enough to make Prolog a strong

candidate for the type of applications that Lisp is used for. It remains to
show the principles behind Warren’s translation.

The absence of evaluable functions in pure Prolog forces one to write,
for example, goals such as sum(1,2,X), sum(X,3,Y). Most agree (including
hard-bitten opponents of “mere syntactic sugar”) that this is unbearable;
hence the alternative X is 1+2+3. What we propose is to allow the second
argument of is to include ISWIM[3] expressions, which are widely known
to have a simple translation to λ expressions. The remainder of this paper
is devoted to a method of translating λ expressions to clauses that gives the
same result as Warren’s on the example in his paper.

As equations play a central role in the method, we review these in the
next section. Section 3 is devoted to translation from λ expressions to equa-
tions. Section 4 introduces a technique using the equations as rewrite rules.
Section 5 shows how a program for translating equations to non-equational
clauses can work by proving the clauses from the equations and equality
axioms. We present our conclusions in Section 6.

2 Recursion equations

Our earliest source for equations as a computational formalism is S.C. Kleene’s
1936 paper “General recursive functions of natural numbers” quoted in [5].
On page 16 this reference gives the following example of a system of recursion
equations:

f(0) = 0
g(x) = f(x) + 1

f(x + 1) = g(x) + 1

with the comment that f is the main symbol and that g is an auxiliary
one. ([5] says that it can easily be verified that the equations determine the
function λx. 2 ∗ x.)

It is clear that the domain of the function computed is limited to expres-
sions of the form 0+1+...+1 with + associating to the left. Hence, we would
now call +1 a postfix unary constructor function and prefer to write it in the
usual functional notation. This gives

f(0) = 0
g(x) = s(f(x))

f(s(x)) = s(g(x))

where we need to be aware of three different types of function: constructors,
auxiliaries and the main function.

The above equations are in what we call value-oriented style. The reason
is that the terms denote the values of the functions being defined rather
than the functions themselves. Another possibility is the applicative style

where the functions themselves are denoted by terms. In this style, the above
example becomes

f : 0 = 0
g : x = s(f : x)

f : s(x) = s(g : x)

The first argument of the application operator : is a term denoting a func-
tion. This in contrast to the value-oriented version, where all terms denote
numbers. Also, here : is the only evaluable function.

Applicative style has a number of advantages. One is that the constructor
functions are easier to recognize. Another is that the application operator
: is syntactically easily interchangeable with the abstraction operator λ.
Finally, as we shall see in a later section, another advantage of applicative
form is that it can be easily transformed into a readily executable Prolog
program.

3 Lambda expressions and recursion equations

Both λ expressions and recursion equations can be used to define functions.
Lisp provides both alternatives, for example

(DEF SQUARE (LAMBDA (X) (* X X)))
(DEF SQUARE (X) (* X X))

To us, the first alternative looks like

square = λX. X ∗ X

and the second looks like

square : X = X ∗X.

Interchangeability. Comparison of these alternatives suggests that the
abstraction and application operators are interchangeable. This is indeed the
case: if we apply both sides of f = λx. B (where x is the only free variable
of B) to x, then the left-hand side becomes f : x and the right-hand side
becomes, by β-reduction, B. Hence we conclude f : x = B. Conversely, let
us assume that f : x = B, where x occurs free in B. Applying abstraction to
both sides gives λx. (f : x) = λx. B. According to the extensionality axiom
(η-reduction of λ-calculus) we have λx. (f : x) = f . Hence we conclude that
f = λx. B. Indeed, each of f = λx. B and f : x = B is derivable from the
other.

Status of variables. When the λ expression λx. B has no free variable, it
denotes a fully specified function. Hence a constant of logic, such as f , is an
appropriate name for such an object. If, on the other hand, λx. B does have
free variables, say, x1, . . . , xn, the function denoted depends on the values
of these variables. Such a partially specified object must be named in logic
by a term with these variables as arguments. Hence, in the context of logic,
the free variables of a λ term are logic variables; they have a status that is
different from the bound variables, which are λ variables. It is only to the
latter that the binding rules apply.

According to the scope rules of λ-calculus it is possible for two different
λ-variables to have the same name, as in the following example:

fourtimes = (λf. λx. f : (f : x)) : (λf. λx. f : (f : x))

It is always possible to rename the λ-variables in such a way that different
λ-variables have different names; this was called “standard form” by A.
Church. Without loss of generality we assume that the lambda expressions
to be translated to recursion equations are in standard form. This has the
advantage that we can represent λ-variables also by logic variables, which are
chosen to be distinct from other logic variables. We regard an abstraction as
a term with two arguments, the bound variable and the body; the first is a
logic variable (which will not give problems for λ-terms in standard form) and
the second is a logic term representing the body. Strictly speaking, according
to the rules of logic syntax, we have to represent λx. t : x as λ(x, t : x), but we
trust that no confusion will arise when we stick to the traditional λ-calculus
notation as in the first alternative. More information on the relation between
λ expressions and equations can be found in [1].

Lambda elimination. As an example, let us show how to eliminate the
λ’s from the definition of the “twice” function t = λf. λx. f : (f : x). The
constant on the left-hand side is appropriate, as the right-hand side has no
free variables. Changing the outermost λ to an application gives t : F =
λx. F : (F : x), where F is a logic variable. To remove the remaining λ, we
have to introduce an appropriate term to name the right-hand side. As there
is a free variable F , the term has to have it as argument. Hence we obtain

t : F = g(F)
g(F) = λX. F : (F : X).

One further application and β-reduction gives

t : F = g(F)
g(F) : X = F : (F : X),

which completes the translation to λ-free equations. As this procedure re-
moves a λ at every stage, any λ expression can be converted to λ-free equa-
tions by repeatedly applying it. With the removal of each λ, a new function
symbol needs to be generated. We call these the introduced function symbols.

Lambda introduction The following equalities effects the reverse trans-
lation, where the introduced function symbols are exchanged for λ’s:

t = λX. t : X = λX. g(X) = λX. λY. g(X) : Y = λX. λY. X : (X : Y)

The first step uses extensionality; the second uses an equation; this alterna-
tion continues throughout the derivation.

To automate the translation by means of Prolog, we devise an SLD-
derivation with the same effect as the above chain of equalities. This can
be done with respect to a logic program consisting of the equations and the
clause

X = λY. Z ← X : Y = Z1, Z1 = Z,

which is a consequence of extensionality and transitivity. Notice that the
λ-variable in λY. is treated as a logic variable. Hence the second occurrence
of Y names the same variable. For this example we obtain the following
SLD-derivation:

← t = Z
Z substituted by λY. Z2

← t : Y = Z1, Z1 = Z2

equation t : Y = g(Y) used
← g(Y) = Z2

Z2 substituted by λY1. Z4

← g(Y) : Y1 = Z3, Z3 = Z4

equation g(Y) : Y1 = Y : (Y : Y1) used
← Y : (Y : Y1) = Z4

reflexivity used
� with t = λY. λY1. Y : (Y : Y1)

This could be done by a Prolog program if we could find a way of detecting
when the leftmost goal needs to resolve with an equation and when with the
combined extensionality and transitivity axiom.

The problem presented by this choice of alternatives can be solved by
using a different predicate symbol for equality in these two cases. The se-
mantics of logic does not prevent two different predicate symbols to denote
the same relation, although there is usually no reason for this to occur. In
this case there is the reason that we want to be selective in using the clauses
contributing to the definition of the equality relation.

As a result of these considerations, we use the “=” sign only in equations
and eq elsewhere. Hence we get

eq(X, λY. Z) ← X : Y = Z1, eq(Z1, Z).
eq(X, X).

instead of the earlier form

X = λY. Z ← X : Y = Z1, Z1 = Z.
X = X.

To prevent attempts to translate variables we insert nonvar(X), so that our
translation from equations to λ expressions is effected by the Prolog program:

eq(X, lambda(Y,Z)) :- nonvar(X), X:Y=Z1, eq(Z1,Z).
eq(X, X).

The first argument of eq must be a term occurring as a function in the
left-hand side of an equation. For example, when the equations are added
to the above two clauses to give the Prolog program, the query ?-eq(t,Z)
succeeds with Z = lambda(F,lambda(X,F:(F:X))). Notice here that the
resulting value of Z is a λ-expression in standard form; hence λ-terms of
the form lambda(U,lambda(U,...)) can never be generated because every
instance of lambda(Y,Z) introduces new logic variables.

4 Rewriting by resolution

We can now translate λ expressions into sets of recursion equations. Before
describing a translation from these equations to Warren’s format, it is in-
structive to consider computing directly with these equations. One method
is to consider the equations as logic clauses and make use of them as rewrite
rules. If the rules are augmented with a set of equality axioms in the form
of a logic program, it becomes possible to “rewrite by resolution”. By this
we mean that the Prolog derivation mechanism can be made to apply the
equality axioms in such a way that they reduce an expression to canonical
form. This approach is discussed in detail in [8].

Although the presence of equality axioms guarantees that SLD deriva-
tions exist that mimic equational rewriting, Prolog control will not find such
derivations when the equality axioms are in their usual form. However, [8]
shows that it is possible to specify an alternative of the usual equality axioms
for which essentially one SLD-derivation exists, so that SLD-resolution can
be used to mimic equational rewriting. It was observed that the reduction
of expressions follows a regular pattern, in which the following two steps are
repeated until the empty clause is derived:

1. If the left-hand side of the leftmost goal is canonical, apply the reflex-
ivity axiom, otherwise apply the transitivity axiom.

2. If possible, make use of an equation on the leftmost goal. If not, use
substitutivity.

The “canonical” test in the first step can be avoided if we instead try to apply
transitivity first and apply reflexivity only if transitivity does not reduce the
expression. One possible set of axioms that performs rewriting according to
the steps above is the following:

eq1(X, Z) :-
eq2(X, Y), % transitivity

eq1(Y, Z).
eq1(X, X). % reflexivity

eq2(X:Y, Z) :- % substitutivity
eq1(X, X1),
eq1(Y, Y1),
eq3(X1:Y1, Z),

eq2(X+Y, Z1) :-
eq1(X, X1),
eq1(Y, Y1),
eq3(X1+Y1, Z1),

eq2(X, Y) :- X = Y.

eq3(X, Y) :- X = Y. % rewriting
eq3(X, X).

X+Y = Z :- Z is X+Y. % harness machine arithmetic
succ:X = X+1. % definition of successor fn
t:F = g(F). % equations generated from
g(F):X = F:(F:X). % the definition of "twice"

Each of eq1, eq2, and eq3 denote equality. By choosing one of these names
we can ensure that Prolog control uses the right equality axiom or an equa-
tion at the right time. The eq2 relation must contain clauses for all function
symbols. To evaluate the expression twice:succ:0 we can pose the query
?-eq1(twice:succ:0,X) to Prolog, which will succeed with X=2. The time
required for this technique to evaluate a benchmark was measured and is
reported in Appendix B with the other results.

These axioms perform the desired rewriting, but they are limited by the
principle behind the rewriting strategy: any rewrite-based system spends
a large part of its time searching for subexpressions to rewrite. It is this
limitation that leads us to the second half of our translation.

5 Translating equations to relational form

Since rewriting is hampered by nested subexpressions, an optimization would
be to somehow disassemble expressions before computation. As a simple
example, imagine trying to evaluate the expression 2*(3+4). We are able to
see that the subexpression 3+4 must be computed before the multiplication
can be performed. Thus we could first have the computer solve the equation
3+4=Z, and then evaluate 2*Z=Result. If we were to “flatten” expressions in
this manner before evaluation, the rewrite system could be much expedited.
It could spend all of its time solving sequences of simple equations instead of
searching for subexpressions. But we can take the process one step further:
since we know what the simple equations will be, we can compile them into

Prolog code that will compute their value when called. The rest of this
section is devoted to such a translation.

The relationalization axiom

∀x1, . . . , xn, v f(x1, . . . , xn) = v ↔ ff(x1, . . . , xn, v)

states that ff relates the value of the function f to its arguments. Together
with axioms of equality it can be used to prove from an equation its rela-
tionalized version. For example, we can use the relationalization axiom

∀x, y, z x : y = z ↔ apply(x, y, z)

and equality axioms to prove from t(F) : X = F : (F : X) the logic program
clause

apply(t(F), X, Z)← apply(F, X, U), apply(F, U, Z).

We use the following method for such proofs. Start by translating the left-
hand side of the equation to relational form. In this example we translate
t(F) : X to apply(t(F), X, Z). We now form the following chain of implica-
tions:

apply(t(F), X, Z) ← t(F) : X = Z ← t(F) : X = U, U = Z ←
F : (F :X)=Z ← F :X =U, F :U =Z ← apply(F, X, U), apply(F, U, Z).

The implications are justified, respectively, by the relationalization axiom,
transitivity, the equation, substitutivity, and relationalization again. The
chain proves

apply(t(F), X, Z) ← apply(F, X, U), apply(F,U,Z),

which is the desired relationalized form of the equation t(F) :X =F : (F :X).
The next step is to formalize this chain further by making each link in

it into a goal statement in the sense of logic programming in such a way
that the entire chain becomes an SLD-derivation. This requires us to be
precise about the form of the axioms used: they are the input clauses of the
SLD-derivation.

← apply(t(F), X, Z)
apply(X, Y, Z)← X : Y = Z

← t(F) : X = Z
X = Z ← X = Y, Y = Z

← t(F) : X = Z1, Z1 = Z
t(F) : X = F : (F : X)

← F : (F : X) = Z

X : Y1 = Z ← Y1 = Y2, X : Y2 = Z
← F : X = Z2, F : Z2 = Z

X : Y = Z ← apply(X, Y, Z)
← apply(F, X, Z2), F : Z2 = Z

X : Y = Z ← apply(X, Y, Z)
← apply(F, X, Z2), apply(F, Z2, Z).

The derivation is incomplete; it yields a “conditional answer” [9, 6] which
is a clause where the initial goal with the cumulative substitution applied to
it is the head and the final goal statement as body. The derivation proves
that this conditional answer is logically implied by the input clauses of the
SLD-derivation.

As far as we know the first logic program to translate equations to rela-
tionalized form was in [7]. In this program it is not clear why the resulting
clause is justified by the equation and the axioms. The authors invented the
program by having it duplicate the known manual operations. The SLD-
derivation shown above suggests a better way: have the translation from
equation to relationalized clause in the form of a meta-interpreter that con-
structs an SLD-derivation giving the desired clause as conditional answer.
In this way the resulting clause is obtained directly from its proof.

This method does not depend on the meta-interpreter itself being a logic
program. However, Prolog is a convenient choice of language. A meta-
interpreter yielding conditional answers is the following.

Concl if Concl <-
Concl if Cond <- decompose(Concl, Front, Goal, Back),

Head = Goal,
clause(Head, Body),
concatenate(Body, Back, Back1),
concatenate(Front, Back1, Cond1),
Cond1 if Cond.

The first goal of the body states that the list Concl can be decomposed into
a list Front, followed by Goal, a single selected goal, and the list Back of
remaining goals. The program on which the meta-interpreter acts is encoded
in the meta-language by clauses of the form clause(Head,Body) where Body
is a list of terms representing atoms in the object language.

The meta-interpreter is activated by a query of the form ?- <a> if Z
where <a> is a term representing the conclusion of the desired conditional an-
swer. The simple version of the interpreter shown above gives many different
conditional answers. To get exactly the one we want requires the addition
of some conditions and the right definition of decompose and clause; see
appendix.

6 Conclusions

We have shown a generally applicable method for translating λ expressions
to clauses not containing the equality predicate and to do the translation
in such a way that the control of Prolog can perform the equivalent of the
evaluation of the λ expression. Our method gives the same result as Warren’s
when applied to his example (((t:t):t):succ):0 where t=λf. λx. f : (f : x). We
do not know whether our method is the same as Warren’s, as he does not
discuss it in his paper.

We first translate λ expressions to equations. We perform this part of the
translation by means of a few small Prolog clauses not discussed in the paper.
In the second stage we relationalize the equations, resulting in clauses that
are efficiently executable by Prolog. We show how our implemented transla-
tion process is a proof that the relationalized version is a logical consequence
of the equations and of the equality axioms.

A natural way to incorporate our translation into Prolog is as an en-
hancement of the is built-in predicate. As it stands, its second argument
must be an arithmetic expression. A natural generalization, one that leaves
the rest of Prolog unaffected, is to allow this second argument to be any λ
expression, preferably in modified syntactic form such as ISWIM[3].

Results of computations that are functions present problems in existing
languages for functional programming. Lisp arbitrarily disallows the usual
λ notation in such cases, forcing the user to explicitly construct “closures”
with system functions especially provided for this purpose. Scheme is an
improvement in that it accepts λ notation. However it does not display the
result. In our approach a result that is a function contains function symbols
introduced by the translation. These are of course inscrutable to the user.
We therefore translate equations back to λ expressions. In section 3 we
derive a Prolog program of two small clauses that performs this translation.
Without it, the value of t : t would be given as g(t) where t : F = g(F),
and g(F) : X = F : (F : X). This program translates such an answer
to λX. λZ. (λY.X : (X : Y)) : ((λY1. X : (X : Y1))) : Z), which of course still
needs β-reductions to give λX. λZ. X : (X : (X : (X : Z))).

In Appendix B we give comparisons of times taken by Prolog and by
several Lisp processors to run similar programs. One of these examples is
almost pure higher-order processing, while the others were run to make a
comparison of speed on tasks not involving higher-order functions. Although
we are aware of many ways in which these comparisons can be misleading,
we believe them to be useful nonetheless. In the following paragraphs we
discuss some possible objections.

We have only compared run time, not memory usage. In the case of Lisp
and Prolog this omission is not as serious as with conventional languages.
Lisp and Prolog require in principle an amount of memory that far exceeds
what is available on any real machine. Therefore both require garbage collec-
tion. As a result, inferior memory usage gives rise to more frequent garbage
collections, hence causes longer run time.

It may well be objected that our benchmark, the “twice” function, is not
representative of higher-order functions. However, there is no clear agree-
ment as to what does constitute a typical set of higher-order functions so the
best one can do is to find an approximation that is as close as possible to a
pure higher-order function. The “twice” benchmark has the advantage that
almost all processing goes into producing functions that produce functions,
and so on.

It may also be objected that Lisp is not a fair representative of a language

for higher-order functions as this type of programming occurs rarely in Lisp
practice. As a result, implementers are not likely to attempt to produce
efficient code from higher-order functions. True enough. But what about
Prolog? The implementers of Prolog did not even know that higher-order
functions can be handled at all. Thus Prolog is subject even more strongly
to the same handicap, which makes our observations all the more surprising.

We started comparing the run times for the “twice” benchmark and were
cautioned that the favorable showing of Prolog might be due to the fact
that a fast Prolog implementation does everything faster than a slow Lisp
implementation. The other comparisons show that this is indeed the case.
Suppose we would first have run the programs not involving higher-order
functions. Someone skeptical about the merits of Prolog would probably
object: “Yes, I see that this Prolog is faster on the basic list processing stuff,
but I have yet to see how it does on the ‘twice’ function. You can’t even
express that.” Warren’s work and ours shows that “twice” not only can
be expressed as well as in λ-calculus, but that Prolog evaluates it faster by
about the same factor as it does the basic list processing stuff.

This work is based on the premiss that higher-order functions are im-
portant in programming. We realize that not everyone agrees with that.
There certainly is a considerable discrepancy between the point of view of
J.McCarthy, the inventor of Lisp, according to which higher-order functions
must have been important enough to cause him to select the λ-calculus rather
than recursion equations as the formalism on which to base Lisp. The prob-
lems McCarthy had with recursive definitions (see [4]) support our belief
that he must have been committed to λ-calculus.

The prevailing view of the subsequent developers and users of Lisp is
quite different. For example, in a widely used book on Lisp the only reference
to the λ-calculus is contained in the following quote ([11], page 121):

Some Lisp aficionados attach a great deal of significance to
the role of lambda in Lisp. This may be because the lambda
notation is similar to something called the lambda calculus, first
developed by the logician Alonzo Church. Having the lambda
notation seems to give Lisp an air of intellectual respectability
that is generally lacking in most programming languages.

Lambda is nice because it detaches the idea of a function
from the idea of a name. This allows us to have “disembodied”
functions, as we have seen above. In addition, it makes Lisp
rather elegant internally. However, the whole business is proba-
bly less of a big deal than many people would like you to believe.
Lambda is useful, but most Lisp programs would work just as
well if lambda did not exist as a separate abstraction.

Yet higher-order functions are a powerful programming tool, even though
they fail to impress the Lisp community. As a result there arose in the
seventies and early eighties a second generation of languages for functional

programming such as (in alphabetic order) FP, Hope, KRC, Lispkit Lisp,
Miranda, ML, SASL, Scheme, and probably others, where higher-order func-
tions find a more hospitable environment. Warren’s work and ours shows
that Prolog, with a suitable preprocessor, can be counted among the second-
generation languages for functional programming.

7 Acknowledgments

We are grateful to Dan Hoffman and Michael Levy for helpful remarks.
The Canadian Natural Sciences and Engineering Research Council provided
facilities for the research reported here.

A Relationalization meta-interpreter

:- op(100,yfx,’:’).

% The first argument of condAnswer is an atom representing
% the conditional answer itself; the second is a list of the
% conditions. condAnswer is true if a successful derivation
% exists using the goal selection strategy given in "dec",
% and clauses of the form "clause([Head|Body])".

condAnswer(Conc,Cond) :-
clause([Conc,X=Y]), % un-relationalize
clause([eq(Conc,X)]), % use defining equation,
condAnswer2([X=Y],Cond). % and transitivity

% condAnswer2 is true if a successful derivation exists
% using the goal selection strategy given in "dec", and the
% clauses of the form "clause([Head|Body])".

condAnswer2(Conc,Cond) :-
decompose(Conc,Front,Goal,Back),
clause([Goal|Body]),
concatenate(Body,Back,Tail),
concatenate(Front,Tail,Conc2),
condAnswer2(Conc2,Cond).

condAnswer2(Conc,Conc) :-
not(decompose(Conc,F,Goal,B)).

% decompose(Cond,F,X,B) is true if X is a goal from the
% list of goals Cond, and concatenate(F,[X|B],Cond). Here
% decompose is restricted such that it chooses only goals of
% the form X=Y.

decompose(Cond,Front,X=Y,Back) :-
lDiff(Cond,Front,X=Y,Back).

% lDiff(Xs,F,E,B) is true if concatenate(F,[E|B],Xs).

lDiff([X|Xs],[],X,Xs).
lDiff([X|Xs],[X|Ys],U,Back) :- lDiff(Xs,U,Ys,Back).

% An expression X is constructed if it is not a variable
% and it’s not atomic.

constructed(X) :- nonvar(X), not(atomic(X)).

clause([eq(t(F):X, F:(F:X))]). % Defining equation

% The following clauses define substitutivity. They will
% only be applied if the head expression contains a con-
% structed subexpression. Clauses of this form are required
% for each constructor.

clause([X:Y=Z,Y=Y1,X:Y1=Z]) :- constructed(Y).
clause([X:Y=Z,X=X1,X1:Y=Z]) :- constructed(X).
clause([X+Y=Z,Y=Y1,X+Y1=Z]) :- constructed(Y).
clause([X+Y=Z,X=X1,X1+Y=Z]) :- constructed(X).

% To define the relationship between predicates and equations.

clause([X:Y=Z,apply(X,Y,Z)]).
clause([apply(X,Y,Z),X:Y=Z]).
clause([X+Y=Z,plus(X,Y,Z)]).
clause([plus(X,Y,Z),X+Y=Z]).

B Benchmarks

The speeds of Prolog and Lisp were compared on three benchmarks. The first
is as pure higher-order processing as we can think of. The other two involve
no higher-order functions and emphasize list processing. We used IBUKI
Common Lisp (Release 01/01) and Franz Lisp (Opus 38.91) that come with
Sun software, not the faster versions that can be purchased separately. Both
come in interpreted and compiled versions. In general, IBUKI generated
faster compiled code and Franz was the faster of the two interpreters. On
general list processing, ALS-Prolog was about three times faster than the lisp

version of the tests as compiled by the IBUKI compiler. This should be taken
into account with the following facts: our rewriting approach was about
the same speed on the “twice” benchmark as interpreted Franz Lisp, and
the relationalized version ran approximately five times faster than IBUKI
compiled Lisp. A comparison with ML is also important, as it uses a method
different from Lisp. [2] has more detailed results on timings and code.

References

[1] M.H.M. Cheng. Lambda-equational Logic Programming. PhD thesis,
University of Waterloo, 1987.

[2] M.H.M. Cheng, M.H. van Emden, and B.E. Richards. On warren’s
method for functional programming in logic. Technical Report DCS-
122-IR, University of Victoria Logic Programming Laboratory, 1989.

[3] P. Landin. The next 700 programming languages. Comm. ACM, 9:157–
164, 1966.

[4] J. McCarthy. Recursive functions of symbolic expressions and their
computation by machine. Comm. ACM, 3:184–195, 1960.

[5] Hartley Rogers, Jr. Theory of Recursive Functions and Effective Com-
putability. McGraw-Hill, 1967.

[6] M.H. van Emden. Conditional answers for polymorphic type inference.
In K.A. Bowen and R.A. Kowalski, editors, Logic Programming: Pro-
ceedings of the Fifth International Conference and Symposium, pages
590–603. MIT Press, 1988.

[7] M.H. van Emden and T.S.E. Maibaum. Equations compared with
clauses for specification of abstract data types. In Advances in Database
Theory, pages 159–194. Plenum Press, 1981.

[8] M.H. van Emden and K. Yukawa. Logic programming with equations.
The Journal of Logic Programming, 4:265–288, 1987.

[9] P. Vasey. Qualified answers and their application to transformation. In
Proceedings of the Third International Logic Programming Conference,
pages 425–432, 1986.

[10] D.H.D. Warren. Higer-order extensions to prolog: are they needed? In
J.E. Hayes, Donald Michie, and Y-H. Pao, editors, Machine Intelligence
10, pages 441–454. Ellis Horwood with John Willey and Sons, 1982.
Lecture Notes in Mathematics 125.

[11] Robert Wilensky. LISPcraft. W.W. Norton, 1984.

