
Memory Systems for Parallel Programming

by

Bradley Eric Richards

A dissertation submitted in partial fulfillment of

the requirements for the degree of

Doctor of Philosophy

(Computer Sciences)

at the

University of Wisconsin — Madison

1996

c© Copyright by Bradley Eric Richards, 1996

All Rights Reserved

i

Abstract

Distributed Shared-Memory (DSM) computers, which partition physical mem-

ory among a collection of workstation-like computing nodes, are emerging as the

way to implement parallel computers, as they promise scalability and high perfor-

mance. Shared-memory DSM machines use a coherence protocol to manage the

replication of data and to ensure that a parallel program sees a consistent view of

memory.

Applications have very different patterns of communication and no single,

general-purpose protocol suits all programs. This has prompted interest in systems

in which a protocol is implemented in flexible software instead of being fixed in

hardware. DSM machines with software-implemented coherence protocols provide

opportunities for a variety of more complex and application-specific protocols and

allow for protocols that do not just ensure consistent memory, but also provide

new functionality and semantics.

Parallel programming has long faced a tension between the goals of high per-

formance and ease of use. Languages and tools can make parallel computers

easier to use, but concerns about their efficiency have limited their usage. This

ii

thesis demonstrates that some high-level languages and tools can be implemented

more efficiently by taking advantage of the cache coherence protocols that underly

software DSM machines, thereby improving both performance and ease of use.

This thesis describes a family of custom protocols that efficiently implement a

large-grain data-parallel language C**. On programs for which static analysis is

imprecise, these Loosely Coherent Memory (LCM) protocols improve performance

from a few percent up to a factor of 3, and reduce memory overheads from a

factor of 2 to a factor of 5 over a compiler-copying scheme. LCM is also improves

performance in C-code programs by up to a factor of 3.

This thesis also presents custom cache-coherence protocols that perform on-

the-fly detection of actual data races for programs with barrier synchronization.

Overheads in execution time for the race-detection protocols were shown to range

from zero to less than a factor of three — a significant improvement over compa-

rable approaches — and race-detection protocols found actual program errors in

two applications.

iii

Acknowledgments

It is a pleasure to finally acknowledge those who have helped me achieve this goal.

At the top of the list are my parents and grandparents. Without their financial

and emotional support over the years, I would not be where I am today. I also

thank Jim Larus, my advisor, for his support and encouragement, and for helping

to sharpen my research and presentation skills. Thanks also to Bart Miller and

Charles Fischer, for taking the time to read this thesis and providing valuable

feedback.

That these past six years of graduate school have been so enjoyable is entirely

due to the people with whom I have worked and played. The members of the

Wisconsin Wind Tunnel group were a source of constant support and stimulation.

Alvy Lebeck, Babak Falsafi, and Steve Reinhardt deserve special mention for al-

ways making time to answer my questions. I will particularly miss my interactions

with Satish Chandra and Guhan Viswanathan — they were always enlightening

and enjoyable.

Several generations of graduate students helped to brighten my days in Madi-

son. Cheryl Thompson, Dan Ross, and Tim Morrison made me feel welcome

iv

from the moment I arrived. When they moved on, Kurt Brown, Bill Roth, and

Mary Tork Roth looked after me. These last few years I have had the pleasure

of sharing the company of Mark Craven, Susan Goral, Susan Hert, Tia Newhall,

and Martha Townsend. Susan Hert deserves special recognition for being brave

enough to share a house with me for the last three years, and for being such a

good friend. Kelly Cherry, Pedar Foss, Pete Machalek, Jill Smook, and the rest

of the college gang kept in touch, and provided valuable distractions from my

studies. Last but not least, my thanks to Holly for her support during these last

few difficult months. Having you there made all the difference.

Bradley Eric Richards

University of Wisconsin — Madison

August 1996

v

Contents

Abstract i

Acknowledgments iii

List of Figures viii

List of Tables xi

1 Introduction 1

1.1 Loosely Coherent Memory . 3

1.2 Data Race Detection . 5

1.3 Contributions . 6

1.4 Thesis Organization . 7

2 Background 8

2.1 Distributed Shared Memory Systems 8

2.2 Coherence Protocols . 10

2.2.1 Writing Protocols with Teapot 13

vi

3 Loosely Coherent Memory and C** 18

3.1 Introduction . 18

3.2 Related Work . 19

3.3 Reconcilable Shared Memory . 21

3.4 C** . 22

3.4.1 Implementing C** Semantics 24

3.5 LCM . 26

3.5.1 LCM Implementation . 29

3.5.2 LCM-MCC . 32

3.5.3 LCM-Update . 34

3.6 Verification . 34

3.7 Performance . 36

3.7.1 Benchmarks . 37

3.7.2 Experimental Setup . 38

3.7.3 Performance Optimizations 39

3.7.4 Performance Results . 41

3.8 Conclusions . 47

4 Other LCM Applications 48

4.1 Introduction . 48

4.2 LCM as an Update Protocol . 49

4.2.1 Chem . 50

4.2.2 LCP . 52

4.3 Efficient Reductions with LCM 54

vii

4.3.1 Water . 56

4.3.2 Overlay . 59

4.4 Conclusions . 62

5 Protocols for Detecting Data Races 64

5.1 Introduction . 64

5.2 Background . 65

5.2.1 Types of Race Conditions 65

5.2.2 Detecting Races . 67

5.3 Related Work . 70

5.3.1 Traditional Approaches . 72

5.3.2 System-Level Approaches 72

5.4 Design . 74

5.4.1 Monitoring Accesses . 74

5.4.2 Detecting Concurrency . 81

5.4.3 Detecting Data Races . 82

5.4.4 Detected Races . 91

5.5 Verification . 93

5.6 Performance . 96

5.6.1 Benchmarks . 97

5.6.2 Experimental Setup . 98

5.6.3 Race Detection Results . 98

5.6.4 Performance Results . 102

5.7 Conclusions . 107

viii

6 Conclusions 109

6.1 Thesis Summary . 110

6.2 Future Work . 111

A The LCM Protocol 122

B The Race Detection Protocols 131

ix

List of Figures

2.1 Simple home-side protocol finite-state machine 11

2.2 Finite-state machine with intermediate states 12

2.3 Pseudocode handlers for RdShared to Exclusive transition 14

2.4 Teapot pseudocode handlers . 15

2.5 Teapot compilation paths . 16

3.1 C** parallel function . 23

3.2 Revised parallel function . 24

3.3 Dynamic parallel function . 25

3.4 Stencil code with LCM support 28

3.5 Requesting read-only block and upgrading 29

3.6 Reconciling a modified copy . 31

3.7 LCM-MCC and LCM-SCC . 33

3.8 Improvements for C** benchmarks 42

3.9 Memory overheads for LCM-SCC and LCM-MCC 46

4.1 Producer-consumer sharing . 49

4.2 LCM-update support for Chem 51

x

4.3 Pseudocode for LCP, with and without LCM support 53

4.4 Processors competing to modify location 55

4.5 Multiple modifications with LCM 55

4.6 Pseudocode for Water, with and without LCM support 57

4.7 Intersection of two polygon maps 58

4.8 Pseudocode for Overlay, with and without LCM support 59

4.9 LCM reconciliation function for Overlay 61

4.10 Merging polygon lists . 61

4.11 Summary of application improvements 62

5.1 Example of a general race . 66

5.2 Partial order execution graph . 68

5.3 False race hiding genuine race . 78

5.4 Monitoring the first read and write 80

5.5 Sample race-detection protocol handler 83

5.6 Multiple races . 84

5.7 Guarded race-detection protocol handler 86

5.8 Multiple races due to false sharing 87

5.9 Multiple readers after a write . 88

5.10 Spurious race caused by false sharing 90

5.11 Example of a self race . 90

5.12 Pseudocode showing program error 100

5.13 Spurious races reported . 101

5.14 Races missed . 101

xi

5.15 Slow-downs for Gauss and Water 103

5.16 Slow-downs for Appbt, LCP, and Em3d 104

A.1 LCM-SCC remote-side FSM . 123

A.2 LCM-SCC home-side FSM . 124

A.3 LCM-MCC remote-side FSM . 125

A.4 LCM-MCC home-side FSM . 126

A.5 LCM-SCC-Update remote-side FSM 127

A.6 LCM-SCC-Update home-side FSM 128

A.7 LCM-MCC-Update remote-side FSM 129

A.8 LCM-MCC-Update home-side FSM 130

B.1 Race-detection protocol remote-side FSM 132

B.2 Race-detection protocol home-side FSM 133

xii

List of Tables

3.1 LCM memory-system directives 27

3.2 Stache, SCC, and MCC verification results 35

3.3 Update verification results . 36

3.4 C** benchmark applications . 37

3.5 Bulk flush optimization (Stencil) 39

3.6 Update optimization (Stencil) . 40

3.7 Shared-memory access faults . 42

3.8 Update statistics, static scheduling 44

3.9 Update statistics, dynamic scheduling 45

4.1 Summary of improvements for Chem 52

4.2 Summary of improvements for LCP 54

4.3 Summary of improvements for Water 58

4.4 Summary of improvements for Overlay 61

5.1 Example of missed accesses . 75

5.2 Cache access permissions and protocol states 76

5.3 Access permissions and protocol states 77

xiii

5.4 Protocol verification results . 95

5.5 Benchmark applications . 96

5.6 Races detected by Race-Byte-4 99

5.7 Network contention (tries per send) 103

5.8 Race-detection overheads . 105

5.9 Statistics on read and write faults 106

1

Chapter 1

Introduction

The primary motivation underlying parallel computing is simple: Users can obtain

higher performance by dividing a computation across a set of processors and

running portions of it concurrently. Unfortunately, as many have discovered,

programming parallel computers can be much more difficult than programming

sequential computers. The task is easier if a parallel system supports a shared

address space, since this abstraction allows processors to share a common pool

of memory and frees a programmer from concerns about the correctness of data

layout and movement. Distributed Shared-Memory (DSM) computers, which

partition the physical memory among a collection of workstation-like computing

nodes, are emerging as a popular way to implement parallel computers because

they promise scalability and high performance.

Shared-memory DSM machines require a coherence protocol to manage the

replication of data and to ensure that a parallel program sees a consistent view of

memory [3, 19, 32, 42, 64]. In general, coherence protocols allow at most a single

2

processor to modify a shared location, either invalidating outstanding copies or

updating copies with the new value. A protocol determines, to a large extent, the

performance of a shared-memory program since communication occurs through

loads and stores to shared data.

But, applications have very different patterns of communication, and no sin-

gle, general-purpose protocol has proven well suited to all programs. This has

prompted interest in systems that enable users to select from a set of coherence

protocols [13, 18] and, more recently, in systems in which a protocol is implemented

in flexible software instead of being forever encoded in hardware [36, 54]. Exper-

iments have shown that the performance penalties for implementing coherence

actions in software, instead of hardware, are relatively small (especially if com-

mon operations are accelerated by hardware [36, 55]), and that tailoring protocols

to the needs of applications can result in tremendous performance increases [28].

Parallel computers of the future will likely be DSM systems with software-

implemented coherence protocols. This hardware provides opportunities for a

large variety of more complex and application-specific protocols and allows for pro-

tocols that do not just ensure consistent memory, but also provide new function-

ality and semantics. Tasks ranging from program monitoring (i.e. bounds check-

ing, profiling, performance monitoring) to language implementation (i.e. garbage

collection, reductions) can benefit from access to protocol-level information and

performance.

Parallel programming has long faced a tension between the goals of high per-

formance and ease of use. Languages and tools can make parallel computers

3

easier to use, but concerns about their efficiency have limited their usage. This

thesis demonstrates that some high-level languages and tools can be implemented

more efficiently by taking advantage of the cache coherence protocols that un-

derly software DSM machines, thereby improving both performance and ease of

use. The following sections describe in more detail the contributions this thesis

makes towards efficiently implementing a new parallel programming language and

detecting data races through the use of custom coherence protocols.

1.1 Loosely Coherent Memory

Recently, there has been considerable interest in higher-level parallel languages,

such as HPF [31], in which a compiler handles the details of mapping from an

abstract parallel model to a particular machine. The success of this, and other,

parallel languages depends on efficient implementations.

This thesis describes a new approach to implementing languages on parallel

machines in which a cache coherence protocol called Loosely Coherent Memory

(LCM) plays a crucial role. The compiler and LCM collaborate to efficiently

implement the semantics of a high-level parallel language by exploiting user-level

control of a processor’s address space to detect and handle language semantic

exceptions without slowing down execution of correct memory references. This

collaborative effort is similar to sequential language implementations, such as

Lisp and ML, that exploit memory systems to perform heap bounds checking and

concurrent garbage collection [7]. In both systems, operations proceed under the

assumption they will not fail. A processor’s memory system catches unexpected

4

situations, which are handled out of the program’s normal line of code.

As a proof of concept, I show how LCM can be used to efficiently implement

a large-grain data-parallel language called C** [39], whose semantics are other-

wise difficult to implement. In C**, a parallel function is applied simultaneously

and instantaneously to each element in an aggregate. This language semantics

makes it appear as if each function invocation is the only one executing, which

frees the programmer from considerations of conflicting side effects, and simpli-

fies reasoning about program behavior. In a C** program running under LCM,

memory references in parallel functions that could possibly interfere with other

function invocations are specially marked. The LCM memory system maintains

per-processor copies of modified cache blocks, which the memory system merges

at the end of a parallel function invocation. Programs supported by LCM are

shown to run up to a factor of three faster than those relying on conservative

compiler-generated code to ensure correct C** semantics.

LCM works well with C**, but is not limited to the implementation of C**

programs. LCM can also be used to optimize the performance of shared memory

programs written in other languages by reducing the overheads incurred by both

false and true sharing, and by streamlining communication. LCM is shown to

increase performance by nearly a factor of five for some shared memory programs

written in C and hand-annotated with the appropriate LCM directives.

5

1.2 Data Race Detection

A race condition exists in a shared-memory parallel program when accesses to

shared memory are not properly synchronized. These unsynchronized references

potentially indicate a programming error, since the order in which the references

are completed, and so possibly the final value of the shared memory location, is

undetermined. It can be difficult to debug programs containing data races, since

the perturbation caused by the monitoring or debugging tools can cause the races

to disappear. Thus, there has been much interest in techniques for finding and

detailing races.

Static techniques can find potential races at compile time, but the static anal-

ysis and assumptions about code that could potentially execute concurrently must

both be conservative, leading to reports of races that may not be possible. The

programmer must then decide which reported races are spurious and which are

truly problematic. Off-line analysis of trace information collected during an ex-

ecution can be used to detect both races that actually occurred, and those that

could have occurred given the synchronization contained in the program [48], but

they require that large traces be generated and stored. On-the-fly checking can

be used to detect races during execution, but the monitored programs have been

shown to be up to a factor of six slower than the unmonitored [25].

Since cache coherence protocols manage accesses to shared data, they are

aware of an application’s memory references. This access information can be

used, either directly or with augmentation, to detect actual data races during

execution. Since the access information is already maintained by the coherence

6

protocol, protocol-based approaches hold the promise of being able to detect races

with lower overheads than existing techniques. This thesis presents results for a

family of race-detection protocols showing that accurate, useful race detection can

be performed with performance penalties of less than a factor of three.

1.3 Contributions

This thesis observes that cache coherence protocols can be used to help implement

parallel programming language semantics, and identifies the points in coherence

protocols at which compilers can control memory-system policies. It provides im-

plementations of a set of custom protocols that support the parallel programming

language C**, and formally verifies that they work correctly. Factors influencing

protocol performance are investigated, and it is demonstrated that they can im-

plement the semantics of C** more efficiently than an approach based on static

compiler analysis. The protocols are also shown to be useful for supporting pro-

grams in languages other than C**.

This thesis presents implementations of a range of custom protocols that detect

actual data races, formally verifies that they work correctly, and demonstrates

that they can find data races in real applications. Tradeoffs between performance

penalties and the accuracy of race detection are investigated, and it is shown that

accurate detection of actual races can be performed with overheads ranging from

none to a factor of less than three.

7

1.4 Thesis Organization

This thesis is organized as follows. Chapter 2 contains background information on

distributed shared-memory machines and cache coherence protocols. Chapter 3

describes the LCM protocol in detail and presents performance results for a set

of C** programs supported by LCM. Chapter 4 shows how LCM can be used to

improve the performance of shared-memory programs independent of C**. The

race detection protocols are discussed in Chapter 5. Chapter 6 summarizes the

thesis and gives directions for future work. Protocol finite-state machine diagrams

are given in Appendices A and B.

8

Chapter 2

Background

Subsequent chapters describe how custom cache coherence protocols can help

efficiently implement parallel languages and tools on distributed shared-memory

computers. This chapter lays the groundwork by providing an overview of both

distributed shared-memory systems and coherence protocols.

2.1 Distributed Shared Memory Systems

Distributed shared-memory systems present users with the illusion of a global,

shared pool of memory even though memory is physically divided across a set of

distinct processing nodes. They accomplish this by transparently moving copies

of data from processor to processor in response to shared-memory accesses. DSM

systems can be built using two basic mechanisms. The first mechanism, access

control, allows the system to control access to memory by permitting read and

write accesses only for valid, cached data. Reading or writing an invalid location

9

or writing a valid but read-only location must cause an access fault and invoke

the coherence protocol. The second mechanism, communication, enables a system

to transfer control information and data among processors.

Access control can be performed at various granularities. Page-based sys-

tems [10, 12, 14, 17, 34, 44] typically use operating-system page-protection schemes

to implement access control, and therefore enforce coherence at the page granular-

ity. This approach can be used to implement shared memory on loosely-coupled

systems where no hardware support for shared memory exists. But, the large co-

herence granularity can cause increased contention if programs share data at gran-

ularities finer than a page, as processors compete to gain access to the page-sized

regions of memory. There can also be large overheads associated with transferring

page-sized regions of memory. At the other extreme, Cache-Coherent Nonuniform

Memory Access (CCNUMA) systems [2, 20, 43, 55] implement access control at the

granularity of a cache block, reducing the contention over each block of memory.

Both access-control mechanisms and the coherence protocols that they invoke

can be implemented in hardware or software. Traditionally, page-based DSMs

have taken an all-software approach while CCNUMA designs have implemented

both mechanisms and protocols in hardware. These lines have recently begun

to blur. Fine-grained access control has been successfully implemented in soft-

ware [58], and a number of CCNUMA machines have moved their coherence pro-

tocols to software as well [36, 45, 54]. Software protocols offer the possibility of

tailoring protocols to the needs of applications, and makes the work in this thesis

both possible and relevant.

10

2.2 Coherence Protocols

DSM systems implement a shared memory by transparently moving copies of data

from processor to processor in response to shared-memory accesses. A coherence

protocol ensures that a parallel program sees a consistent view of memory by

managing the replication and movement of this data. In general, a protocol en-

sures some form of consistency either by invalidating outstanding copies when a

processor writes to a memory location, or by updating these copies with the new

value.

A protocol comes into play at an access fault. It must satisfy the faulting ac-

cess by bringing data to the memory of the faulting processor. In many protocols,

each block of shared data has a home node that coordinates accesses to the block.

The accessing processor sends a request to the home of the referenced block, which

performs bookkeeping duties and returns the data. Once a processor obtains the

data, it caches a copy, which can be subsequently accessed until it is invalidated.

Many protocols, for example the Stache protocol [55], enforce coherence by per-

mitting only a single writer (or multiple readers) to a block. When a home node

receives a request for a writable copy of a block, it invalidates the outstanding

read-only copies before returning the writable block. The memory reference and

the request and invalidation messages are protocol events, which cause transitions

in a protocol state machine.

Both the home node and caching processors record state for a block. At a

protocol event for block B, the protocol consults the state of B to determine

an action. Actions may send messages to other processors, await their replies,

11

Readers Writer

Idle

Figure 2.1: Simple home-side protocol finite-state machine

update protocol-specific information, and change access permissions. The exact

states, transitions, and actions depend on the coherence algorithm. Many coher-

ence schemes have been proposed [3, 11, 19, 32, 42], but none works well for all

applications and sharing patterns.

Conceptually, a simple invalidation protocol like Stache requires only the three

block states shown in Figure 2.1. A block is either Idle, in which case there are

no remote cached copies, or there are one or more Readers, or a single Writer.

Although the transitions appear as atomic state changes in response to protocol

events, in reality they cannot be atomic. To avoid deadlock in a real system,

protocol handlers must run to completion and terminate. In practice, this requires

introducing intermediate states into the protocol finite-state machine.

Consider the transition from Writer to Readers in Figure 2.1, which responds to

a read request by a processor. This transition can complete only when the block’s

previous owner relinquishes it. Conceptually, the action for this transition sends

an invalidation message and awaits an acknowledgement. But handlers cannot

wait on an asynchronous event, such as a message arrival. Hence, after sending

the invalidate message, the handler must change to an intermediate state and

12

RS_To_Idle

Excl_To_RSRS_To_Excl Idle

Excl_To_Excl

Exclusive

RdShared

Excl_To_Idle

Figure 2.2: Finite-state machine with intermediate states

13

terminate. Figure 2.2 shows the state machine after introducing the necessary in-

termediate states. When the invalidation acknowledgement subsequently arrives,

the transition completes by changing from the Excl To RS intermediate state to

RdShared. Other states also require intermediate states for their transitions.

Intermediate states complicate programming because they make transitions

non-atomic. While in an intermediate state, the protocol may receive many mes-

sages other than the expected reply message. For example, the state Excl To RS

waits for an invalidation acknowledgement message. Before that message arrives,

another processor may request permission to read or write the same block. The

protocol designer must consider these possibilities and provide the Excl To RS

state with suitable actions.

In general, the complexity of writing a correct protocol grows with the number

of required states and the interactions between states and messages. Message

reordering in the network further adds to the complexity, because messages may

arrive in an unexpected order. For example, a read request from a processor

that already has a readable copy cannot be ignored or treated as an error. The

processor may have returned its copy and subsequently requested a readable copy.

If messages can pass each other in the network, the read request must be retained

and processed after the first copy has been returned.

2.2.1 Writing Protocols with Teapot

Teapot [22] is an environment for designing, verifying, and implementing cache

coherence protocols. It simplifies the task in two significant ways. First, it provides

14

RS_To_Excl ExclusiveRdShared
Get_Excl Put_RO

Get Excl Handler:

Begin

Foreach RO copy

Send invalidation

Move to RS_To_Excl

End

Put RO Handler:

Begin

Update bookkeeping

If last RO copy

Send Excl copy

Move to Exclusive

End

Figure 2.3: Pseudocode handlers for RdShared to Exclusive transition

language support for organizing and writing protocol handlers. Second, it can help

ensure that protocols work correctly by generating input for a formal verification

tool called Murφ [24]. Experience with Teapot has shown it to reduce protocol

implementation and debugging time by an order of magnitude.

Language Support

The Teapot protocol specification language provides a construct, Suspend, that

allows handlers to be written as though they can wait on asynchronous events.

The handler is later compiled into atomically-executable pieces. To illustrate its

use, consider the protocol transition from RdShared to Exclusive in response to

a request for a writable copy. Before a writable copy can be given to a remote

processor, all outstanding read-only copies must be invalidated. Figure 2.3 shows

the pseudocode handlers required to implement this transition.

When the Get Excl request arrives in state RdShared, the first handler is

15

Get Excl Handler:

Begin

Foreach RO copy

Send invalidation

Suspend(RS_To_Excl)

Send Excl Copy

Move to Exclusive

End

Put RO Handler:

Begin

Update bookkeeping

If last RO copy

Resume

End

Figure 2.4: Teapot pseudocode handlers

run. It sends invalidations to the holders of read-only copies and moves to the

RS To Excl state to await acknowledgment of the invalidations. The second han-

dler is run as each acknowledgement (Put RO) is received. It notes the fact that a

read-only copy has been returned and, if there are no more outstanding read-only

copies, sends the exclusive copy to the original requestor.

Figure 2.4 shows the equivalent Teapot handlers. The handler for the Get Excl

request sends out invalidations, then calls Suspend. The Suspend call moves the

protocol to the RS To Excl state and waits there until all invalidation acknowl-

edgements have been received, at which point it sends off the exclusive copy and

moves to the Exclusive state. The handler for the returned copies still performs

bookkeeping duties but, as the acknowledgement for the last read-only copy ar-

rives, calls Resume and returns control to the statement following the Suspend.

While an intermediate state is still required in which to wait for acknowledge-

ments, the Suspend call has allowed all other action code for the transition from

RdShared to Exclusive to be moved into a single handler. When implementing

16

Teapot
Compiler

C Code

Protocol
Specification

oMur

Figure 2.5: Teapot compilation paths

real, complex protocols this can significantly improve the readability and modifia-

bility of the protocol code. It is not unusual to have handlers containing multiple

Suspend calls in nested control structures. Without Teapot, the equivalent set of

handlers is inscrutable.

Automatic Verification

Even with the improved programming environment provided by Teapot, proto-

cols can be difficult to write correctly. Programmers must anticipate all possible

messages that could arrive in a given state — including those due to reordering

in the network — and handle them correctly. Finding protocol errors can be an

extremely difficult and time-consuming task. Protocols contain complex timing-

dependent paths, and bugs may not be repeatable. Even protocols that appear

stable can harbor bugs waiting to be triggered by a particular sharing pattern

or application. Teapot eases the debugging burden tremendously by exhaustively

testing protocols for errors.

As shown in Figure 2.5, the Teapot compiler can turn protocol specifications

into executable C code, or generate input to Murφ [24], a formal verification

17

tool. The verification process exhaustively explores a state space that is the cross

product of all protocol, network, and data-structure states on each simulated

processor. The size of the state space to be explored is therefore related to the

complexity of the protocol and the size of the system configuration being verified.

There are states in the verification space corresponding to all possible interleavings

of access faults, message arrivals, and message reorderings in the network.

If verification is successful, it implies that all arriving messages have been an-

ticipated and properly handled, and that the protocol will not deadlock on the

system configuration tested. Practical considerations limit verification to config-

urations composed of two or three processors and one or two memory locations.

The depth of the simulated network reordering can be controlled as well, and is

typically tested for depths of up to two, which means that a given message can

pass at most two other messages along the same network link. Verification does

not currently test data values, though it would be possible to do so. While proto-

cols can only be guaranteed to work on configurations as complex as those used

during verification, in practice verifying on small configurations has been sufficient

to eliminate (detectable) bugs from protocols running on real systems.

18

Chapter 3

Loosely Coherent Memory and

C**

3.1 Introduction

This chapter describes Loosely Coherent Memory (LCM), a custom protocol that

implements the semantics of a new parallel programming language C** [39] up to

three times faster than other approaches.

Semantically, parallel tasks in C** execute simultaneously and instantaneously ,

so conflicting data accesses are impossible. Programmers need not consider po-

tential interactions between tasks since no interaction is allowed. Implementing

C** requires processors to keep local copies of modified data items to prevent

changes from becoming globally visible until all parallel tasks have completed.

Compilers can generate code to either explicitly copy modified items, or create re-

19

named copies on-the-fly. But imprecise static analysis forces the explicit approach

to copy a superset of the modified locations, and managing copies at runtime is

complex and requires expensive runtime tests. LCM helps implement C** by al-

lowing protocol-level copies of shared data to develop at runtime, and efficiently

reconciles copies once all tasks have finished. Copying at the protocol-level is

transparent (copies are at the same address as originals), and eliminates the need

for runtime tests. Since it copies at runtime, LCM copies only modified locations.

LCM is an example of a larger class of Reconcilable Shared Memory (RSM)

systems, which generalize the replication and merge policies of cache-coherent

shared memory. RSM protocols differ in the action taken by a processor in re-

sponse to a request for a locations and the way in which a processor reconciles

multiple outstanding copies of a location.

The RSM model is described in Section 3.3 after a discussion of related work

(Section 3.2). An overview of the C** language is given in Section 3.4. Several

LCM implementations are described (Section 3.5), and all are formally verified

(Section 3.6). Section 3.7 presents performance results and analysis.

3.2 Related Work

Relaxed consistency models [1, 26, 30] take advantage of the fact that global

memory need not always appear consistent. Performance gains can be had by

allowing incoherence to develop, but ensuring memory coherence at user-specified

synchronization points. There is a similar lack of coherence in RSM between

reconciliations, but the incoherence conforms to a semantics and can therefore

20

be reasoned about. For example, LCM requires the predictable behavior of the

incoherent memory for the correct implementation of C** semantics.

RSM shares with Munin [13] and TreadMarks [6, 35] the ability to adapt

standard distributed shared memory policies to better suit an application. Both

Munin and TreadMarks provide a set of fixed coherence mechanisms, each tai-

lored for a specific sharing pattern. The user or compiler associates a coherence

mechanism with each object. RSM allows dynamic schemes that can be applied

at the cache block granularity as opposed to the language-object level.

In VDOM [29], memory objects are immutable, and an attempt to modify

an object produces a new version of the object. It is related to RSM in that

both systems allow multiple copies of memory items to develop. VDOM handles

coherence at the language-object level, as opposed to RSM’s finer-grained cache

block level. It also uses a single, inflexible coherence mechanism based on object

version numbers.

Like LCM, the Myrias machine [12] copied data on-the-fly to prevent interac-

tions between parallel tasks. But the Myrias scheme was implemented in hard-

ware, and copied data at the page granularity. Being hardware based, the copying

and reconciliation policies were necessarily fixed.

The division of labor between the C** compiler and LCM is reminiscent of

the techniques for stack and heap bounds checking [8] and concurrent garbage

collection [7] in Lisp. With normal stop-and-copy garbage collectors, all pointers

into the old heap can be replaced with pointers into the newly compacted heap.

Concurrent collectors allow the computation to proceed, and attempt to copy

21

objects from the old heap to the new without interruption. Virtual memory

protections can be used to trap accesses into the old heap, at which point they

can be transparently redirected to the appropriate object in the new heap.

3.3 Reconcilable Shared Memory

Reconcilable Shared Memory (RSM) is a family of memory systems that provides

means by which a compiler can implement policies to control memory system be-

havior and performance. Both conventional cache-coherent shared memory and

the LCM protocol fit within the RSM model. RSM assumes the same basic mech-

anisms as cache-coherent shared memory [55, 64] but generalizes the coherence

policies. RSM systems differ in the action taken by a processor in response to a

request for a location and the way in which a processor reconciles multiple out-

standing copies of a location. Unlike most shared-memory systems, RSM places

no restrictions on multiple outstanding writable copies of a block and permits

non-sequentially consistent memory models.

Reconciliation of writable copies brings the copies’ contents into agreement.

It may also, depending on the reconciliation function, invalidate copies (remove

them from processors’ caches and memories). Reconciliation can return memory

to a consistent state in which all copies of a location contain the same value.

Reconciliation provides an opportunity to communicate values among processors

and to perform computation on these values. An application program controls

the request and reconciliation policies through memory system directives, which

specify the policies for a region of memory.

22

Sequentially consistent, cache-coherent shared memory is a simple form of

RSM. Since it fits within this model, it provides a natural default policy for a

RSM system. Requests in these shared-memory systems return a copy of a block,

subject to the guarantee that only one processor holds a writable copy at a time. In

many systems [19, 42], a centralized directory controller records which processors

hold copies of a location and invalidates outstanding copies upon request.

Reconciliation policies in these systems are also simple. Read-only copies

are identical and so can be combined by a null reconciliation function. When a

processor returns a writable copy of a block, its value is reconciled by making it

the new value of the location. Update-based systems reconcile after modification

to a shared location by assigning the new value to all copies.

3.4 C**

Much of the burden of programming in current parallel languages is due to pro-

grammers having to reason about interactions between concurrent processes. C**,

a large-grained data-parallel programming language based on C++, eases this

burden by providing a semantics in which parallel processes cannot interact. Pro-

cesses can still collaborate to produce values via a rich set of reduction operations

(including user-specified reductions), but the results of these reductions are not

available until after all parallel tasks complete. During a parallel computation, no

C** process can influence the state of another.

Parallelism in C** results from applying a parallel function across a collec-

tion of data called an aggregate. Aggregates look and behave like C++ arrays,

23

void stencil(parallel matrix &A) parallel

{
// Pseudo variables #0, #1 specify position

int x = #0, y = #1;

// Average neighbors’ values

A[x][y] = (A[x-1][y] + A[x+1][y]

+ A[x][y-1] + A[x][y+1]) / 4.0;

}

Figure 3.1: C** parallel function

but form the basis for parallel functions. Applying a parallel function creates

an asynchronously executed parallel function invocation for each element in an

aggregate. These parallel function invocations appear to execute atomically and

simultaneously, so there is no opportunity for them to interact. Modifications

are private to an invocation, and cannot be seen by other, concurrently-executing

invocations. After all invocations complete, the program’s global state is updated

by merging all private modifications. If two or more invocations modify the same

location, C** specifies that exactly one modified value will be visible after the

merge.

Figure 3.1 shows a C** parallel stencil function that averages its neighbors’

values. When the parallel function is applied to an aggregate (the parallel ar-

gument A), a function invocation is called for each location in the matrix. Each

invocation reads the values in neighboring matrix cells, then updates its own cell

value. Without C** semantics, a programmer would not know whether neighbor-

ing values had been updated. Here, the reads are guaranteed to return unmod-

24

void new_stencil(parallel matrix &B, matrix &A) parallel

{
// Pseudo variables #0, #1 specify position

int x = #0, y = #1;

// Read from A, write to B

B[x][y] = (A[x-1][y] + A[x+1][y]

+ A[x][y-1] + A[x][y+1]) / 4.0;

}

Figure 3.2: Revised parallel function

ified values, since modifications made on neighboring cells are not visible until

all invocations complete. Since stencil writes each data point exactly once, no

modifications conflict and the merge phase collects the values assigned to each

location.

3.4.1 Implementing C** Semantics

A compiler can always generate code that correctly implements the semantics of

C**. Doing so requires identifying modifications to shared data and ensuring that

the modifications are kept local until all invocations complete. For a program with

regular structure like stencil, the analysis can be done statically. All locations in

matrix A are updated during each call of the parallel function, so a complete copy

of the matrix is required. Figure 3.2 shows a source-level rewriting of stencil,

illustrating the introduction of a copy of matrix A to hide modifications. Each

invocation reads from A as before, but writes new values to a matrix B. After the

parallel function completes, A and B are swapped.

25

void dyn_stencil(parallel &A) parallel

{
int x = #0, y = #1;

if (foo) {
// Must create copy of A[x][y]

A[x][y] = A[x][y] + ((A[x-1][y] + A[x+1][y]) / 2.0);

}
if (bar) {

// Have we already created copy?

A[x][y] = A[x][y] + ((A[x][y-1] + A[x][y+1]) / 2.0);

}
// Have we modified A[x][y]?

}

Figure 3.3: Dynamic parallel function

For programs with dynamic access patterns, the compiler is forced to explicitly

copy a conservative superset of the modified locations, since static analysis cannot

precisely identify modifications. Alternatively, the compiler could generate code

to perform the copying at runtime. By deferring copying decisions until execution,

only as much data as necessary is copied.

Figure 3.3 shows a parallel function with dynamic behavior. Each invocation

modifies a given location from zero to two times, depending on the values of

a pair of conditional expressions. Prior to the first modification of A[x][y], a

local copy must be created. All subsequent references to A[x][y] — both writes

and reads — must be preceded by tests checking whether a local copy exists.

In the second assignment statement in Figure 3.3, the read of A[x][y] must be

satisfied from the local, renamed copy if one exists. The write either modifies the

26

previously-created copy or creates one and modifies it. Also, since each processor

typically handles multiple function invocations, local copies must be managed

such that modifications are not visible from one invocation to the next on the

same processor. Finally, notice that the compiler cannot tell if A[x][y] has been

modified by dyn stencil. The compilation approach used for the earlier stencil

function hid modifications by using a second array, but could only do so because

analysis guaranteed every location would be modified. The array of modified

values B will be incomplete unless unmodified values are explicitly copied from A

to B.

3.5 LCM

Neither of the outlined approaches for implementing C** are particularly appeal-

ing. Generating code to perform explicit copying only works well for programs

with static access patterns, and the dynamic copying method requires a compli-

cated copy-management scheme and frequent runtime checks.

The coherence protocol underlying the C** code is already managing copies

of shared data, and can be extended to incorporate the particular copying scheme

required by C**. Protocol support for C** semantics has several advantages.

Protocol-based schemes are dynamic, and only copy as much data as necessary

to implement the semantics of C**. They also simplify the task of compilation,

since the compiler can rely upon the protocol to implement the semantics. Copies

maintained by the protocol can be referenced transparently — data resides at

the same address whether it has been copied or not. Finally, runtime checks are

27

Directive Behavior
mark modification(addr,size) Notifies LCM of pending modification
reconcile copies() Barrier; returns system to consistency
flush copies() Reconciles single invocation’s writes

Table 3.1: LCM memory-system directives

eliminated, though the compiler must interact with the memory system prior to

modifying shared data.

Loosely Coherent Memory (LCM) is an RSM memory system that implements

the semantics of C**. The compiler uses RSM directives to identify memory ac-

cesses in a parallel function that possibly conflict. At these references, LCM copies

the memory block containing the accessed location and makes it private to the

invocation. If multiple invocations modify the same location, LCM creates local

copies for each invocation. These multiple writable copies preserve the semantics

of C**, even though shared memory as a whole is no longer consistent. When the

parallel call terminates, LCM reconciles multiple versions of a block to a single

consistent value.

LCM provides the C** compiler with the three directives shown in Table 3.1.

The first, mark modification(addr,size), creates an inconsistent, writable copy

of the memory block(s) containing locations addr through addr+size. The sec-

ond, reconcile copies() appears as a global barrier executed by every proces-

sor. When it finishes and releases the processors, the memory has been reconciled

across all processors and is again in a consistent state. During the merge phase

initiated by the directive, all modified blocks are flushed back to their home pro-

28

void stencil_wrapper(matrix &A)

{
for(all invocations assigned to me)

{
set variables #0 and #1 ;

// Function body:

mark_modification(A[#0][#1],4); // LCM directive

A[#0][#1] = (A[#0-1][#1] + A[#0+1][#1]

+ A[#0][#1-1] + A[#0][#1+1]) / 4.0;

flush_copies(); // LCM directive

}
reconcile_copies(); // LCM directive

}

Figure 3.4: Stencil code with LCM support

cessors to be reconciled. Outstanding read-only copies of these blocks are then

invalidated throughout the system. The third directive, flush copies(), per-

forms a partial reconciliation by flushing a processor’s modified cache blocks back

to their home processors.

Figure 3.4 illustrates the directives’ use. It shows a simplified version of the

code generated by the compiler for the stencil function from Figure 3.1. Each

invocation writes to A[#0][#1], which is also read by its four neighboring invo-

cations. Compiler analysis easily detects this potential conflict, which the C**

compiler rectifies with mark modification directive. The flush copies direc-

tive removes modified copies from a processor’s cache before another invocation

starts. The reconcile copies directive causes the memory system to reconcile

modified locations and update global state to a consistent value.

29

Write Req

Write Resp

Home P2P1

 = 1A[1]

Read Req

Put Req

Put Resp
Read Resp

mark(A[1]);

Upgrade

Figure 3.5: Requesting read-only block and upgrading

3.5.1 LCM Implementation

An LCM memory system was implemented using the Tempest interface [54]. It

is based on an invalidation protocol similar to Stache [55], and provides cache-

coherent shared memory as its default. Deviations from globally consistent mem-

ory come as a result of the LCM directive mark modification, which creates local,

writable copies of memory blocks. In general, these writable copies are produced

by locally upgrading read-only blocks. If the processor invoking the directive has

no copy of the block, it requests and upgrades a read-only copy. This has the

advantage of causing the home to acquire and produce the most recent copy of

the block, as shown in Figure 3.5.

Once a processor has called mark modification, only read-only copies of the

marked block exist as far as the home’s directory is concerned. The home is

guaranteed to have an up-to-date copy of the data, and can use this copy to

30

satisfy read-requests from other processors. (The block was either in a read-shared

state before a mark was performed, or the mark caused the home to acquire the

most recent data.) The home must maintain an unmodified copy of the block

for satisfying read requests, or the semantics of C** will be violated. Thus, if

the home invokes mark modification, a clean copy of the block is made in local

memory before the block is modified and subsequent read requests are satisfied

from the clean copy.

An invocation’s modifications must remain accessible until it terminates, since

processors have no way of retrieving or recreating modifications if data were pre-

maturely flushed from the cache and returned home. The Tempest implemen-

tation on which LCM is built uses a processor’s local memory as a large, fully

associative cache, and prevents locally-modified blocks from being lost. When a

modified cache block is selected for replacement (either because of a capacity or

conflict miss), the block is moved to local memory. On a cache miss to the block,

its value comes from memory, rather than its home processor.

It is equally important to ensure modifications are not visible to subsequent

invocations on the same processor. In general, processors will handle many func-

tion invocations, and modified blocks must be removed and returned to the home

after each invocation completes. The flush copies directive (used in Figure 3.4)

returns blocks marked during the current invocation to prevent them being read

by later invocations. Modified blocks are merged with modifications from other

invocations at the home, according to the combining operation specified by the

reconciliation function. The merge results are written to an accumulator copy in

31

1 2 3 4 5 6 7 8

10 40 70502 3 6 8

10 40 70503 60 −1

Modified Copy

Accumulator Copy

Clean Copy

Figure 3.6: Reconciling a modified copy

local memory, where they stay until all invocations complete.

In Figure 3.6, a modified block is compared against the clean copy to find

individual modifications. The four new values are then combined with those on the

accumulator copy. The C** reconciliation function specifies that only one of a set

of modifications to the same location is kept, so the the incoming modifications are

simply written to the accumulator copy. Note that the entire modified copy could

not be written to the accumulator without destroying previous modifications.

Processors call reconcile copies to signal completion of their assigned invo-

cations. Once all invocations complete and all modifications have been merged

into their accumulator copies, the accumulators are written back to shared mem-

ory. They represent a block’s final value after a parallel function call. Outstanding

read-only copies of the updated blocks are then invalidated to ensure global mem-

ory is consistent. Once all invalidations are acknowledged, processors emerge from

the call to reconcile copies.

32

3.5.2 LCM-MCC

LCM correctly implements C** semantics, but can perform poorly for applications

that share memory blocks across invocations. Consider the code in Figure 3.4.

Compilers will typically allocate consecutive invocations to processors. Memory

blocks would therefore be written by a series of consecutive invocations, since mul-

tiple values reside on each block. Enforcing C** semantics requires modifications

be hidden from subsequent invocations, so the flush copies directive removes

modified blocks from the processor’s memory after each invocation. But the next

invocation modifies the same block, and it must be reacquired from the home.

Repeatedly flushing and retrieving blocks increases network traffic and causes

delays while processors reacquire previously-flushed blocks. These effects can

be reduced by keeping clean copies on both the home and remote processors.

The first mark modification call on a block creates a writable copy and a clean

copy in local memory regardless of whether it is the home node for the block.

Accesses by subsequent invocations can be serviced from the clean copy and do

not traverse the network. Accumulator copies are kept on each processor as well,

and the flush copies directive locally reconciles modifications into the remote

accumulator.

The LCM system maintaining remote clean and accumulator copies is called

LCM-MCC (for Multiple Clean Copies) to distinguish it from the version that

keeps a single clean copy at the home (LCM-SCC). Semantically, the two versions

are equivalent, but LCM-MCC can be faster than LCM-SCC for applications that

reuse memory blocks. But, the additional performance comes at the expense of

33

Read Req

Read Resp

Return

Read Req

Read Resp

Return

Read Req

Return

Home

Read Resp

flush();

flush();

reconcile();

flush();

flush();

reconcile();

mark(A[1]);

mark(A[2]);

mark(A[1]);

mark(A[2]);

P1 (MCC) P2 (SCC)

Figure 3.7: LCM-MCC and LCM-SCC

the memory required for the remote clean and accumulator copies. These memory

overheads are detailed in Section 3.7.

Figure 3.7 illustrates the differences between the two LCM policies. Both

processors modify a pair of consecutive memory locations (A[1] and A[2]). After

modifying A[1], processor P2 flushes the modified block back to the home, forcing

the subsequent reference to A[2] to retrieve the block. It is flushed again after

writing A[2]. On processor P1, with the LCM-MCC policy, the flush is an entirely

local process. When A[1] is flushed, a local accumulator copy is created and

initialized with the block containing A[1], and the local clean copy is used to

refresh the cached data. The second flush, after modifying A[2], is also a local

process. Data is only transferred home at the start of the merge phase in LCM-

MCC.

34

3.5.3 LCM-Update

Iterative applications like stencil often access the same locations across itera-

tions. But, since processors flush all modified data home at the end of each parallel

function call (under either LCM-SCC or LCM-MCC), blocks are not available for

reuse and must be faulted back for the next iteration. During the merge phase,

both LCM schemes record which processors held a given block, and can eagerly

send updated data as it becomes available.

If an iterative application’s access patterns change over time, update schemes

run the risk of providing processors with updates for memory blocks no longer

referenced. The update versions therefore implement a threshold scheme that

determines whether to update or invalidate read-only copies based on the value of

a counter. (Copies that have been written are clearly still in use, and are always

updated.) After some number of updates, a read-only copy is instead invalidated.

Only those processors still referencing the block will retrieve it on their next access.

The threshold value is set via the set inval thresh(int) directive.

3.6 Verification

Teapot protocol specifications were written and verified for LCM-SCC, LCM-

MCC, and the Update variations of each. (See Appendix A for state diagrams.)

The verification process exhaustively explores a state space, the size of which is

related to the complexity of the protocol and system configuration being verified.

Systems with two or three processors, one or two memory locations, and varying

35

Version Proc. Addrs. Reord. States Rules Seconds

Stache 2 1 0 168 497 8
Stache 2 1 1 230 653 8
Stache 2 1 2 1,735 5,210 10

SCC 2 1 0 50,077 233,237 426
SCC 2 1 1 1,447,729 6,985,398 11,515

MCC 2 1 0 90,930 376,326 679
MCC 2 1 1 753,596 3,238,397 5,804

Table 3.2: Stache, SCC, and MCC verification results

amounts of network reordering were considered, though only configurations with

two processors and one memory location could be exhaustively verified. While

this is insufficient to guarantee that the protocol works correctly on larger config-

urations, it greatly increases confidence that it will do so. Verifying as much as

possible of other configurations adds to this confidence, as it ensures that there

are no errors in the explored space.

Data on completed verifications runs for LCM-SCC and LCM-MCC is given

in Table 3.2. Verification data for the Stache protocol is included for comparison.

The LCM protocols could only be exhaustively verified when network reordering

was limited to zero or one.1 For equivalent configurations, the Stache protocol re-

quires far fewer global states be considered. The LCM protocol description uses a

larger number of states, transitions, and message types than Stache, so more inter-

actions must be explored. Also, in LCM, a larger variety of messages can coexist

1The network reordering number specifies the largest number of messages a
given message can overtake in the network.

36

Version Proc. Addrs. Reord. Thresh. States Rules Seconds

SCC 2 1 0 0 64,783 301,437 571
SCC 2 1 0 1 60,098 283,152 511
SCC 2 1 1 0 1,049,714 5,098,981 8,745
SCC 2 1 1 1 926,758 4,522,397 7,482

MCC 2 1 0 0 106,047 443,075 801
MCC 2 1 0 1 92,438 394,909 852
MCC 2 1 1 0 137,385 574,564 1,104
MCC 2 1 1 1 119,022 506,480 867

Table 3.3: Update verification results

in the network simultaneously, leading to a combinatorial explosion of verification

states as the simulated reordering is increased. (Fewer messages can coexist under

the LCM-MCC policy, and it is therefore affected less by increased reordering.)

Finally, the LCM systems allocate and free block copies in local memory. No such

mechanism exists in Stache, reducing the verification complexity.

Update versions of each LCM protocol were also verified, and the results are

shown in Table 3.3. The threshold parameter in the table determines how many

consecutive updates are sent to read-only holders of data. Values of zero (never

send updates) and one (update every other iteration) were tested.

3.7 Performance

This section compares LCM to the compiler-only approach for implementing C**

semantics, and demonstrates that programs with LCM support can run up to

three times faster than those without. Guhan Viswanathan’s C** compiler, as

37

Application Description Problem Size

Stencil SOR over fixed grid 1024×1024 mesh, 15 iterations
Threshold SOR with conditional writes 1024×1024 mesh, 15 iterations
Adaptive SOR on adaptive mesh 64×64 mesh, 50 iterations
Unstructured SOR on unstructured mesh 512 nodes, 2048 edges, 512 it.

Table 3.4: C** benchmark applications

the default, generates code to perform explicit copying based on (conservative)

static detection of data conflicts. The compiler can also insert directives into the

generated code to control an LCM memory system, and use LCM to ensure C**

semantics at runtime. Identical source code was compiled and tested with both

approaches.

The C** benchmarks and experimental setup are are described in Sections 3.7.1

and 3.7.2. Section 3.7.4 gives a detailed performance comparison between LCM

and the compiler-only approach, after first describing LCM performance optimiza-

tions in Section 3.7.3.

3.7.1 Benchmarks

The four C** benchmarks listed in Table 3.4 were run with both compiler-only and

LCM support. Each performs successive over-relaxation on a mesh, but has been

tailored to explore a particular sharing pattern and behavior. Stencil operates

over a fixed, 2D mesh of single-precision data. During each iteration, function

invocations update mesh cells with the average of the four nearest neighbors’

values. With eight mesh cells per 32-byte block, there is potential for reuse of

38

cached data when processors handle consecutive function invocations. Threshold

is similar to Stencil, but only updates cell values that change. The compiler cannot

tell, statically, which values will be modified during a given iteration and must

therefore copy the entire mesh to ensure C** semantics. The Adaptive benchmark

operates on a 2D mesh of quad-trees that subdivide at runtime to capture regions

of change in more detail. Since the compiler cannot predict node subdivision, it

must conservatively copy the entire aggregate of trees. Also, since the structure

of the trees change as nodes subdivide, the compiler-generated code must traverse

both copies of the mesh between iterations and copy new subdivisions from the

new copy to the old. Unstructured performs successive over-relaxation on an

unstructured mesh. The connectivity of mesh nodes is determined by a data set

read at runtime, and so cannot be known by the compiler. The lack of structure

also gives little potential for reuse of cached data within an iteration.

3.7.2 Experimental Setup

All experiments were performed on a 32-processor CM-5 using the Blizzard-E [58]

implementation of Tempest [55]. Five runs of each application were made on a

given memory system, and the run exhibiting the smallest total execution time

was selected. The LCM implementations tested were hand-coded versions written

prior to the creation of the Teapot tool. These hand-coded protocols were the

result of the lengthy and time-consuming performance tuning, and delivered better

performance than the more recent Teapot-generated protocols. The compiler-only

approach was supported by the hand-coded version of the Stache protocol.

39

Version Improvement Tries/Send Blocks/Msg

LCM-MCC 1.00 25.9 1.0
+ bulk flush 1.30 9.7 63.9
+ bulk flush + asynch 1.44 6.1 63.9

Table 3.5: Bulk flush optimization (Stencil)

3.7.3 Performance Optimizations

The advantage of LCM-MCC over LCM-SCC is twofold: It allows reuse of memory

blocks across invocations, and it lets processors locally combine modifications to

the same block. But modifications are only transferred at the start of the merge

phase, and the MCC policy can therefore cause increased network contention,

since all processors return their modified data simultaneously. An optimization

is to combine messages bound for the same destination into large bulk messages,

reducing the total number of messages sent.

Table 3.5 shows the performance benefit of sending flushed data in bulk for

Stencil. (Stencil benefits most from the LCM-MCC policy and bulk message

sends.) Sending flushed data in bulk results in a speedup of 30%, and dramatically

reduces network contention. A convenient way to assess contention is to measure

the average number of attempts required to inject a message into the network.

The data on the number of tries per send, shown in the third column, drops

by 63%. On average, 63.9 blocks were transferred in each bulk message. Bulk

messages can potentially contain up to 100 32-byte blocks in our system, but the

averages are lower since not every bulk message can be filled.

40

Version Improvement Tries/Send Blocks/Msg

LCM-MCC + bulk flush + asynch 1.00 6.1 —
+ update 1.08 12.5 1.0
+ bulk update 1.13 9.3 42.6
+ bulk update + asynch 1.15 8.9 42.6

Table 3.6: Update optimization (Stencil)

While sending flushed data in bulk reduces the number of messages sent, it also

increases the time required for message handlers to process each incoming message.

In general, handlers should run for as little time as possible, since the network is

blocked during handler execution. A further optimization is to run the handler

just long enough to copy bulk data into a buffer for later processing. The third line

in Table 3.5 reports speedups for this asynchronous message reception/handling

scheme. Overall execution time decreases by an additional 14%, and network

contention drops to 6.1 tries per send.

These same optimizations apply to the sending of updates, since updates are

all sent at the end of the merge phase. Performance data for LCM with updates

is given in Table 3.6. The baseline in this comparison is the LCM-MCC system

flushing modifications in bulk. Adding updates decreases the number of memory

faults by a factor of 5.7 for Stencil, but increases network contention and only

increases performance by an additional 8%. Sending the updates in bulk is an

improvement, as is delayed processing of bulk updates. Taken together, these

optimizations increase performance by an additional 15%.

In the following sections, the measured LCM-MCC implementation sends mod-

41

ified data in bulk with delayed processing. (This optimization does not ap-

ply to LCM-SCC, as it must flush data home immediately in response to the

flush copies directive.) Update versions of both LCM-SCC and LCM-MCC

send updates in bulk and process them asynchronously. Blocks are invalidated

after every 5 updates to ensure unnecessary updates are not sent.2

3.7.4 Performance Results

For each benchmark, C** semantics were implemented using either an LCM mem-

ory system or statically-generated copying code. The SCC, MCC, SCC-Update,

and MCC-Update LCM policies were each tested, and data was taken for both

static and dynamic task-scheduling schemes. In static scheduling, each processor

is assigned the same set of parallel function invocations across iterations. The

dynamic scheme attempts to improve load balancing by allocating tasks to pro-

cessors on demand. Processors may therefore be assigned different invocations

from iteration to iteration.

The performance results are summarized in Figure 3.8, with LCM results nor-

malized to the compiler-only data. For all benchmarks except Stencil, and both

scheduling schemes, programs with LCM support are faster than those using the

statically-generated copying code. Improvements range from a few percent up to

a factor of 1.5 for static scheduling, and from 1.5 to nearly a factor of 3 with

dynamic scheduling.

2A wide range of thresholds were tried, and the default value of 5 was the best
compromise between updating and invalidating.

42

SCC
SCC+Update

MCC
MCC+Update

0.0

0.5

1.0

1.5

2.0

R
el

at
iv

e
P

er
fo

rm
an

ce

Adaptive

Static
Dynamic

SCC
SCC+Update

MCC
MCC+Update

0.0

0.5

1.0

1.5

R
el

at
iv

e
P

er
fo

rm
an

ce

Stencil

Static
Dynamic

SCC
SCC+Update

MCC
MCC+Update

0.0

1.0

2.0

3.0

R
el

at
iv

e
P

er
fo

rm
an

ce

Threshold

Static
Dynamic

SCC
SCC+Update

MCC
MCC+Update

0.0

1.0

2.0

3.0

R
el

at
iv

e
P

er
fo

rm
an

ce

Unstructured

Static
Dynamic

Figure 3.8: Improvements for C** benchmarks

Faults (1000s), Static Faults (1000s), Dynamic
Benchmark No LCM SCC MCC No LCM SCC MCC
Adaptive 1,517 1,804 1,358 5,271 1,799 1,361
Stencil 675 17,330 2,154 4,182 17,455 2,282
Threshold 1,350 594 561 8,392 3,667 3,457
Unstructured 2,472 2,238 2,208 12,549 2,289 2,246

Table 3.7: Shared-memory access faults

43

LCM systems need only maintain copies of modified data, while the compiler-

only approach copies all shared data in each of the four benchmarks. This gives

LCM an advantage in the cases where benchmarks only modify a subset of shared

memory during a given parallel function call. The compiler-generated copying

code must update every aggregate location during each call, and can therefore

generate a larger number of shared-memory access faults. But, once a block is

faulted in, it can often be transparently reused by the copying code — both across

invocations and across parallel function calls. LCM systems must remove modified

blocks after each invocation and either flush them home or locally reconcile them.

And, at the end of each parallel function call, LCM returns all modified data for

reconciliation.

The balance between LCM systems and the compiler-only approach is in-

fluenced by the task-scheduling scheme, since static allocation lets the copying

approach reuse more data across invocations and iterations than does dynamic

scheduling. With dynamic scheduling, processors must acquire data for each new

invocation handled. Both LCM-SCC and LCM-MCC are relatively indifferent to

the scheduling scheme, since they must reacquire data across parallel function

calls in either case.

Table 3.7 shows the total number of shared-memory access faults for each

benchmark. With static scheduling, the compiler-only coping code can be seen

to generate far fewer faults than with dynamic, while the LCM policies gener-

ate similar numbers of faults regardless of the scheduling scheme. LCM-MCC

takes fewer faults in all cases than does LCM-SCC, but the difference is small

44

Faults (1000s) Tries/Send
Benchmark No Up. Update Change No Up. Update Change
Adaptive 1,358 569 42% 6.5 9.2 142%
Stencil 2,154 376 17% 6.1 8.9 146%
Threshold 561 550 98% 1.4 1.5 107%
Unstructured 2,208 1,916 87% 2.3 3.1 135%

Table 3.8: Update statistics, static scheduling

for all benchmarks except Stencil, where blocks are modified up to eight times by

consecutive invocations.

Update Effects

The data in Figure 3.8 helps explain the marginal improvement produced by

LCM update schemes. The table shows updating’s effect on network contention

and access faults taken by each benchmark. Updates increase contention in all

cases, and significantly reduce the total number of access faults for only two of

the four benchmarks. Stencil sees the largest reduction of faults, as its repetitive

access patterns are well served by the update mechanism. But, communication

is hampered by the increased contention, and overall performance improvement

is limited to 13%. Many of the faults in Adaptive cannot be eliminated by the

update mechanism, since new memory is allocated by tree subdivisions during each

iteration. Its performance increases by 10% with updates. In both Threshold

and Unstructured, the number of faults during the computation phase is small

compared to the overall total. In Threshold, for example, 509,000 of the 561,000

misses are due to initialization and a post-processing checksum phase. With

45

Faults (1000s) Tries/Send
Benchmark No Up. Update Change No Up. Update Change
Adaptive 1,361 1,309 96% 7.0 16.6 237%
Stencil 2,282 2,155 94% 5.2 9.3 179%
Threshold 3,457 3,622 105% 1.6 1.6 100%
Unstructured 2,246 2,165 96% 2.4 3.0 125%

Table 3.9: Update statistics, dynamic scheduling

LCM support, mesh values are written only when their value changes. Relatively

few locations change during a given iteration, so few faults result. The benefit

of removing the remaining misses is outweighed by the overheads of the update

mechanism and neither Threshold or Unstructured see performance improvements

when updating.

Not surprisingly, sending updates when tasks are dynamically scheduled results

in slowdowns for all benchmarks. Updated data is often not referenced since

processors potentially handle different invocations across iterations. As shown in

Table 3.9, the total number of faults is essentially unchanged by updates, but the

network contention increases due to the update traffic.

Memory Overheads

Since LCM systems copy only modified locations, they can use significantly less

memory than the compiler-only copying scheme. Figure 3.9 shows memory over-

heads for the LCM policies. LCM-SCC has overheads ranging from 20% to 102%,

with the largest overhead on Stencil, where every shared location is modified. The

compiler-only approach requires exactly 100% overhead for each benchmark, since

46

Adaptive
Stencil

Threshold
Unstructured

0%

50%

100%

150%

M
em

or
y

O
ve

rh
ea

d

LCM−SCC

Copies
State

Adaptive
Stencil

Threshold
Unstructured

0%

100%

200%

300%

M
em

or
y

O
ve

rh
ea

d

LCM−MCC

Copies
State

Figure 3.9: Memory overheads for LCM-SCC and LCM-MCC

it keeps two copies of all shared data. The overheads for LCM-MCC are roughly

twice those for LCM-SCC, since it maintains multiple copies of each block.

LCM memory overheads come from two sources: Memory is consumed by

copies of modified blocks, and is also required to record each block’s state. In

LCM, two additional pointers are kept per block, one each for the clean and

accumulator copies. This extra state information is required for every block,

whether copied or not. For benchmarks that modify relatively few locations (i.e.

Threshold and Unstructured), the state overhead can be larger than the overhead

due to block copies.

47

3.8 Conclusions

This chapter has described the design, verification, and implementation of a fam-

ily of custom cache-coherence protocols that efficiently implement the semantics

of a new parallel programming language C**. Semantically, parallel tasks in C**

execute simultaneously and instantaneously, so data accesses cannot conflict. Im-

plementing C** requires processors to keep local copies of modified data items to

prevent changes from becoming globally visible until all parallel tasks have com-

pleted. These copies can be created by statically-generated code, or on-the-fly at

runtime. Statically-generated code must conservatively copy a superset of the lo-

cations actually modified, causing an increase in the amount of required memory

and a potential increase in the number of shared-memory access faults. Creating

and managing copies at runtime is complex, and requires expensive runtime tests.

LCM helps implement C** by allowing protocol-level copies of shared data to

develop at runtime, and efficiently reconciles copies once all tasks have finished.

Copying at the protocol-level is transparent, and eliminates the need for runtime

tests. On benchmarks without statically-analyzable access patterns, LCM gave

better performance than the compiler-generated copying approach by up to a

factor of three and used significantly less memory. The one benchmark for which

precise static analysis could be performed, Stencil, is representative of a class of

programs for which LCM support is unnecessary. Compilers can generate efficient

code for these programs, and use LCM memory systems as a fallback position on

code for which static analysis is imprecise.

48

Chapter 4

Other LCM Applications

4.1 Introduction

LCM was designed to implement C** semantics, but it can improve the perfor-

mance of programs written in languages with more traditional semantics as well.

LCM’s update mechanism and its ability to efficiently reconcile multiple copies

of data can significantly reduce overheads associated with fine-grained sharing of

data. This chapter shows that LCM support improves overall performance of four

C programs by up to a factor of 3, and can increase the performance of selected

program phases by as much as a factor of 4.7.

In the previous chapter, the C** compiler inserted memory-system directives

to control the behavior of LCM. Programmers did not participate in the collabo-

ration between LCM and the compiler. This chapter shows that directives can be

manually inserted into C programs to improve performance. While incorrect use of

directives can lead to program errors, programmers with knowledge of a program’s

49

A += 1;
Write Req

Write Resp

Home P2P1

Put Req

Put Resp

mark(A);

Read Req

Read Resp

X = f(A);

Update

Figure 4.1: Producer-consumer sharing

communications and sharing patterns can use directives to tune memory-system

behavior to fit the needs of an application.

4.2 LCM as an Update Protocol

It is well known that invalidation-based protocols perform poorly for programs

with producer-consumer sharing. As shown in Figure 4.1, invalidation-based pro-

tocols require a series of messages to communicate a new value from a producer

to a consumer. An update-based protocol saves time and reduces network traffic

by directly communicating values from producers to consumers.

But, update-based protocols can be a poor match for programs without clearly

defined producer-consumer sharing relationships, or with rapidly-changing rela-

tionships, as they can send updates to processors that no longer require them.

The fixed protocol policy in hardware-implemented protocols results in an all-

50

or-nothing decision between update and invalidation protocols, neither of which

may be a perfect match for all program phases. Page-based DSM systems like

Munin [13] and TreadMarks [6] are an improvement, as they allow protocol policies

to be selected for individual program objects, but their large coherence granularity

hinders performance for programs with fine-grained sharing. Tempest [54] allows

programmers to use both update and invalidation protocols as required, and signif-

icant performance improvements have been obtained by tailoring update protocols

to specific applications [28].

LCM provides both update and invalidation protocol policies at a fine coher-

ence granularity, and does so without requiring new, application-specific update

protocols for each program. By default, LCM uses an invalidation-based consis-

tency scheme, but its bulk update mechanism can be used to efficiently apply an

update-based policy on a block-by-block basis. Programmers or compilers can use

LCM memory-system directives to mark modifications for which updates should

be sent. Read-only copies of these locations throughout the system are updated

when the reconcile copies directive is executed. Modifications not preceded by

marks will use the standard, invalidation-based consistency model. The next two

sections demonstrate the effectiveness of the update scheme by using it to improve

the performance of a pair of C-code benchmarks.

4.2.1 Chem

Chem is a computational chemistry application obtained from Iasonas Moustakis

in the Chemical Engineering Department at the University of Wisconsin. As part

51

// Each processor modifies a portion of global vector A.

// New values are a function of entire vector.

FOR i in (my locations) {
mark_modification(A[i]); // prepare for an update

A[i] = f(A); // modify location

}
reconcile_copies(); // flush home and update

Figure 4.2: LCM-update support for Chem

of the computation carried out during each timestep, it solves a system of linear

equations using the conjugate residual method. A global vector of solutions is

shared by processors, each of which assumes responsibility for computing new

values for a portion of the vector. Since computing these new values requires

processors read the entire solution vector, processors are producers for values on

their segment of the vector and consumers of the entire solution.

Figure 4.2 shows pseudocode for the equation-solving phase with LCM sup-

port. Before each processor creates new values for which updates are to be sent,

the mark modification directive obtains a local writable copy. This writable

copy coexists with read-only copies in the system, as it did in C** applications,

and does not cause their invalidation. After all locations have been written,

reconcile copies is called and modified memory blocks are flushed home for

reconciliation. (The C** reconciliation function can be used, since each location

is modified only once.) The LCM-update system then eagerly sends updated

values to read-only holders of the modified blocks.

In C** applications, updated copies of a given block were typically sent to

52

Total Improve- Solve Improve- Total
Version Cycles ment Phase ment Faults
Chem 967M 1.000 558M 1.000 507K
Chem+LCM 665M 1.453 252M 2.219 344K
Chem+LCM+bcast 588M 1.644 197M 2.829 344K

Table 4.1: Summary of improvements for Chem

a handful of processors. In Chem, updates are sent to all processors. To in-

crease performance, LCM’s update mechanism was extended to more efficiently

handle broadcasts of update data. Instead of sending updates to each processor

in turn, a broadcast tree was formed, tailored to the timing constraints of the

CM-5. Table 4.1 shows performance results for Chem with support from both the

standard LCM update scheme, and the new broadcast mechanism. With broad-

cast updates, the overall computation speeds up by a factor of 1.6. The program

phase solving the system of equations — the only portion with LCM support —

improves by a factor of 2.8.

4.2.2 LCP

LCP, written by Satish Chandra and Steve Dirkse [21], solves the linear comple-

mentarity problem in parallel. Given a matrix M and a vector q, LCP finds a

solution vector x such that Mx + q ≥ 0. Like Chem, it divides the global solution

vector among processors, and new values are a function of the entire vector. To

amortize the cost of communicating new solution vector values throughout the

system, processors in LCP refine a local copy of a segment of the vector before

53

Without LCM:

// Refine local solution

FOR l = 1 to 5 {
FOR i in (my segment) {
local_A[i] = f(local_A, A);

}
}

// Write values to global copy

dt = 0.0;

FOR i in (my segment) {
dt = max(A[i]-local_A[i], dt);

A[i] = local_A[i];

}

// Find largest difference

LOCK();

global = max(global, dt);

UNLOCK();

With LCM:

// Refine local solution

mark_modification(my segment);

FOR l = 1 to 5 {
FOR i in (my segment) {
A[i] = f(A);

}
}

// Write values to global copy

dt = 0.0;

// Reconciliation finds dt and

// sends updates

reconcile_copies();

// Find largest difference

LOCK();

global = max(global, dt);

UNLOCK();

Figure 4.3: Pseudocode for LCP, with and without LCM support

committing changes to the global copy. As local values are written back, pro-

cessors monitor the difference between new and old solution vector values. The

computation terminates when the largest difference is less than a given threshold.

Figure 4.3 gives pseudocode for LCP with and without LCM support. With

LCM, processors need not maintain explicit local copies of solution vector seg-

ments. Copies are created at the protocol level when processors mark their por-

tion of the vector. The reconciliation function for LCP is extended to find dt, by

54

Total Improve- Parallel Improve- Total
Version Cycles ment Phase ment Faults
LCP 2,024M 1.000 1,655M 1.000 1,419K
LCP+LCM 869M 2.328 475M 3.484 200K
LCP+LCM+bcast 686M 2.950 351M 4.715 200K

Table 4.2: Summary of improvements for LCP

observing the difference between new and old values as modifications are written

to the accumulator copy. After all modifications have been combined, read-only

copies in the system are updated.

Performance results for LCP are shown in Table 4.2. With LCM support and

broadcast updates, LCP runs 3 times faster overall. But LCP initializes structures

sequentially, and LCM only improves the performance of the parallel portion of

the application, which runs 4.7 times faster with LCM support.

4.3 Efficient Reductions with LCM

LCM support can benefit a large class of applications by efficiently combining

modifications both locally and across processors. Shared data items are typically

modified by multiple processors during a parallel computation, causing write per-

mission (and data) to transfer from processor to processor. Performance can often

be improved by keeping processors’ modifications local, and combining them at

the end of the parallel computation.

Figure 4.4 illustrates two processors modifying the same location A. Processor

55

A += 1;
Write Req

Write Resp

Home P2P1

A += 1;

Put Req

Put Resp

Write Req

Write Resp

mark(A); mark(A);

Figure 4.4: Processors competing to modify location

Home P2P1

mark(A);
Read Req

Flush Flush

mark(A);

Read Req

A += 1; A += 1;

Read RespRead Resp

UpgradeUpgrade

Figure 4.5: Multiple modifications with LCM

56

P1 first increments its value. Before P2 can contribute to A’s value, the home

must remove the block containing A from P1. The writes are serialized since only

one processor can modify A at a time. In Figure 4.5, LCM support allows each

processor to obtain a local, writable copy. Writes to these copies can be performed

simultaneously, and without write permission moving between processors. During

the reconciliation phase, local copies are combined and the contributions from

each processor summed.

This scheme is similar to that used by the multiple-writer protocols in Munin

and TreadMarks. While they allow simultaneous writes to the same coherence

unit (page), they currently have no support for merging modifications to the same

location, and therefore cannot perform reductions in the same manner as LCM.

As will be seen in the following sections, these reductions are a powerful technique

for improving the performance of applications with fine-grained sharing.

4.3.1 Water

Water is one of the Splash [60] benchmarks, and simulates interactions between

molecules in a body of water. Processors are assigned a fraction of the simu-

lated molecules, and are responsible for computing interactions between these

and all others in the system. A pseudocode outline of the program is shown in

Figure 4.6. Without LCM support, processors lock molecules involved in an inter-

action, acquire write permissions, and modify their global states. The LCM code

uses mark modification to obtain a local copy of each molecule before changing

its value. Processors can therefore modify molecules simultaneously, and need

57

Without LCM:

FOR m in (my molecules) {
FOR n in (m . . . m + N/2) {
compute interaction

LOCK m;

m += . . .;
UNLOCK m;

LOCK n;

n += . . .;
UNLOCK n;

}
}

With LCM:

FOR m in (my molecules) {
FOR n in (m . . . m + N/2) {
compute interaction

mark_modification(m);

m += . . .;

mark_modification(n);

n += . . .;
}

}
reconcile_copies();

Figure 4.6: Pseudocode for Water, with and without LCM support

not compete for write permission. Once all interactions have been computed,

modifications are flushed and summed at the home node.

With or without LCM support, processors modify their molecules repeatedly,

as each is involved in interactions with every other molecule in the system. The rel-

ative benefits of LCM increase with the number of modifications to each molecule,

as local writable copies can be reused at no expense while the base application

must potentially reacquire write permission for each modification. This weakness

was recognized by the authors of Water, and a revised version (Water2) was re-

leased that locally accumulates modifications and combines them after performing

all interactions.

Table 4.3 compares the performance of Water with LCM support to both the

original Water code and the improved Water2. Overall, LCM support improves

58

Total Improve- Parallel Improve- Total
Version Cycles ment Phase ment Faults
Water 4,278M 1.000 2,919M 1.000 5,138K
Water2 1,396M 3.064 747M 3.908 1,092K
Water+LCM 1,579M 2.709 697M 4.188 574K

Table 4.3: Summary of improvements for Water

+ =

Figure 4.7: Intersection of two polygon maps

performance by a factor of 2.7, with an improvement of 4.2 during the parallel

phase. Water does extensive sequential initialization of its data structures (for

which LCM support offers no performance improvement), so improvements for the

parallel phase are a better measure of LCM’s effectiveness. The original Water

code with LCM support is slightly faster than even the improved Water2 code,

since it need not keep explicit local copies of molecule data. The resulting decrease

in memory access faults gives Water+LCM a slight performance advantage.

59

Without LCM:

FOR p in (my polygons) {
find overlapping cells

FOR c in (cells) {
LOCK c;

insert(p, c);

UNLOCK m;

}
}

With LCM:

FOR p in (my polygons) {
find overlapping cells

FOR c in (cells) {
mark_modification(c);

insert(p, c);

}
}
reconcile_copies();

Figure 4.8: Pseudocode for Overlay, with and without LCM support

4.3.2 Overlay

Overlay, written as a programming exercise for a book on parallel programming

languages [41], computes the geometric intersection of a pair of rectangular poly-

gon “maps”. Each map covers the same geographical area, and is composed of

a set of non-overlapping polygons. Figure 4.7 shows two such maps, and their

intersection. Map intersections are computed in two phases: First, each input

map’s area is partitioned into cells, and lists containing all incident polygons are

constructed for each. These cells help reduce the number of comparisons per-

formed in the second phase, and form the basis of parallelism in Overlay. Next,

for each cell, polygons from the first input map are tested against those from the

corresponding cell in the second. As overlaps are found, polygons are created and

added to the solution.

The partitioning phase has properties similar to the interaction of molecules in

Water: Each polygon from an input map “interacts” with one or more partition

60

cells, and causes a change in their state. Pseudocode for Overlay is shown in

Figure 4.8. Without LCM support, each cell overlapped by a polygon p must be

locked as p is inserted into the cell’s polygon list. LCM allows processors to obtain

local writable copies of each cell list, and perform the insertion simultaneously with

insertions from other processors.

Previous applications of LCM have combined simple, scalar data types. Here,

the reconciliation function must combine linked lists during the merge phase. Lists

in Overlay are represented by a structure containing pointers to the head and tail

elements. A pair of lists can therefore be concatenated without having to traverse

either. The reconciliation function for Overlay (Figure 4.9) is passed pointers to

clean, modified, and accumulator copies of a memory block. It treats data on

these blocks as list structures, and concatenates lists from the modified copy to

those on the accumulator copy. Figure 4.10 illustrates the process graphically.

LCM allows processors to transparently construct local lists of polygons for

each cell, and efficiently combine these lists during the merge phase. The base

Overlay code was improved to explicitly construct local polygon lists as well, but

the simpler code with LCM support outperforms the new code as it manipulates

less data and therefore takes fewer memory access faults. Table 4.4 gives perfor-

mance improvement results for the overall execution times, and the partitioning

phase for which LCM support has been added. LCM improves the partitioning by

a factor of 4.6 over the code explicitly constructing local lists of polygons. (The

improvement over the base code that locks each cell and directly inserts polygons

is a factor of 12.6!)

61

void rec_fn(polyList_p clean, polyList_p dirty, polyList_p accum)

{
int i;

// for each cell list on the memory block

for (i=0; i<(STACHE_BLK_SIZE/sizeof(polyList_s)); i++) {
// if new list different, concat dirty+clean

if (clean->head!=dirty->head) {
dirty->tail->next = accum->head;

accum->head = dirty->head;

if (accum->tail == NULL)

accum->tail = dirty->tail;

}
clean++; dirty++; accum++;

}
}

Figure 4.9: LCM reconciliation function for Overlay

Dirty

Clean

Accum

New Accum

c

b

a
a

b c

Figure 4.10: Merging polygon lists

Total Improve- Partition Improve- Total
Version Cycles ment Phase ment Faults
Overlay 341M 1.000 287M 1.000 61K
Overlay+LCM 123M 2.779 62M 4.628 39K

Table 4.4: Summary of improvements for Overlay

62

Chem LCP Overlay Water
0.0

1.0

2.0

3.0

4.0

5.0

R
el

at
iv

e
P

er
fo

rm
an

ce

Overall
Phase

Figure 4.11: Summary of application improvements

4.4 Conclusions

This chapter shows LCM support can improve the overall performance of C-code

applications by up to a factor of 3, with performance improvements as large as a

factor of 4.7 in the program phases aided by LCM. (Results are summarized in

Figure 4.11.) For two of the four benchmarks examined, these improvements are

a result of LCM’s ability to selectively apply an update-based coherence policy

instead of the default invalidation-based scheme. The remaining two applications

benefit from LCM’s transparent copying properties and efficient reconciliation.

In each of the benchmarks, LCM memory-system directives were added manu-

ally to correctly-functioning programs. This incremental approach to performance

improvement is attractive, but requires that programmers understand the commu-

nications and sharing patterns in their programs well enough to correctly insert

directives, as their misapplication can introduce errors. Potentially, compilers

or other automated tools could be extended to insert directives, eliminating the

63

dangers of their misuse.

64

Chapter 5

Protocols for Detecting Data

Races

5.1 Introduction

This chapter describes the design and implementation of a family of custom cache-

coherence protocols that perform on-the-fly detection of apparent data races for

programs with barrier synchronization. Overhead in execution time for these

protocols are shown to range from zero to less than a factor of three over a set

of benchmarks — a significant improvement over slow-downs of three to six for

Dinning and Schonberg [25], and five to 30 for Perković and Keleher [53]. Hood,

Kennedy, and Mellor-Crummey [33] have lower overhead than the protocol-based

techniques, at approximately 40%, but require compiler involvement.

Efficient detection of data races is possible on DSM systems because a mech-

65

anism is already in place to invoke the coherence protocol in response to shared-

memory accesses. The protocol can be extended to maintain access histories,

detect concurrency, and watch for data races. The key strength of protocol-based

scemes is that they are completely independent of program source code. Race

detection can be performed on programs written in any language, and on library

routines for which the source may not be available.

Sections 5.2 and 5.3 provide context for this work by introducing previous

work on the formalization and detection of race conditions. The custom protocols

are described in Section 5.4, and Section 5.5 details the efforts to formally verify

them. Section 5.6 gives performance results and analysis.

5.2 Background

A race condition arises in a shared-memory parallel program when accesses to

shared memory are not properly synchronized. Since this lack of synchronization

can lead to programs that behave unpredictably, it is important to be able to

detect and report these conditions. The race detection literature has used a variety

of terms to describe race conditions, but this thesis follows Netzer and Miller [48,

51].

5.2.1 Types of Race Conditions

Netzer and Miller [50, 51] recognized two fundamentally different types of races.

Data races are failures in nondeterministic programs, and occur when critical

66

Source Code:

FOR i = 2,3

A(i) = A(i-1)

END

=⇒

Process 1:

lock(L)

A(2) = A(1)

unlock(L)

Process 2:

lock(L)

A(3) = A(2)

unlock(L)

Figure 5.1: Example of a general race

sections are not executed atomically. General races are failures in programs that

are intended to be deterministic, and occur when the execution order of certain

accesses is not guaranteed. Figure 5.1 shows an example of a general race. A

loop with two iterations is being (incorrectly) parallelized by distributing the

iterations across processors. The lock and unlock calls surrounding the loop

bodies guarantee they execute atomically, but the synchronization does not order

the execution of the iterations. Here, a loop-carried dependence requires that the

first process execute before the second. Thus the program exhibits a general race

even though there are no data races. Note the example would contain a data race

as well if one or both of the calls to lock were missing, since the read and write

of A(2) could execute concurrently.

Two variations of each type of race exist: feasible and apparent. A feasible

race is one that occurs in some realizable program execution. Unfortunately, as

Netzer proves [48], finding feasible races of either type is NP-hard for all types of

synchronization. Apparent races occur when a race is detected in an execution

permitted by the synchronization of the program (ignoring constraints caused by

data dependences). The set of apparent races is an approximation to that of

67

feasible races, since some of the executions exhibiting races may not be realizable.

Finding apparent races is still NP-hard for programs using synchronization strong

enough to implement two-process mutual exclusion, but is tractable for weaker

synchronization.

For data races, a third type exists. Actual data races occur when atomicity of

a critical section is violated. The set of actual races is a subset of the apparent

races since it captures races that actually occurred in an execution, and not those

that had the potential of occurring. Actual general races do not exist. Intuitively,

this is because one cannot detect a general race without comparing the exhibited

program ordering against all possible executions.

The protocols developed in this chapter find and report apparent data races

on-the-fly. The details are discussed in Section 5.4.4. Apparent races are more

useful from a diagnostic standpoint, because, while they can report infeasible

races, they report accesses that could have executed concurrently and not just

those that did. A single execution without apparent races therefore guarantees

that all executions with the same data dependences will be race free.

5.2.2 Detecting Races

Accesses to a common memory location by a pair of processes are said to conflict if

at least one of them is a write. Race conditions are the result of conflicting accesses

made by blocks of code that could potentially be unordered. Detecting data races

therefore requires determining whether or not program synchronization orders

pairs of code blocks. In general, statically determining which blocks of code could

68

b4 b5 b7 b8

b1 b2

b9 b10

b3 b6

=X=X

X=

=X

Figure 5.2: Partial order execution graph

execute concurrently is undecidable, since it requires precise information about

control flow and dependences, but the ordering information can be approximated

if one assumes all paths through a program are possible. This potentially lists

blocks as being unordered that could never execute concurrently. (A pair of blocks

found to be concurrent could be preceded by conditionals that ensure only one

of them ever runs, for example.) It is exactly this inaccuracy that leads to the

distinction between feasible and apparent races: Races declared on the basis of

approximated concurrency data (apparent races) might not be realizable.

The code ordering constraints can be represented by a partial order execution

graph (POEG), where edges represent blocks of code and vertices represent co-

ordination events. Figure 5.2 shows a POEG corresponding to a program with

two levels of fork/join parallelism. The write of X in code block b10 conflicts with

the reads of X in b1 and b3. Races exist between these pairs of blocks since the

program imposes no orderings between them. There is no race between b6 and

b10, since they are ordered by synchronization in the program (the join at the end

69

of b6).

Three basic approaches have been used to detect races. Static techniques [4, 9,

16, 27, 62] examine the text of a program and use static analysis to approximate

the shared-memory locations accessed by each code block. This information, com-

bined with the concurrency information in the POEG, detects apparent races by

finding pairs of unordered blocks making conflicting accesses to common locations.

Static methods are necessarily conservative, since information on accessed mem-

ory locations is not precise, and the resulting spurious race reports can overwhelm

users [33, 46].

Post-mortem [5, 23, 49] and on-the-fly methods [25, 33, 46, 52, 59, 61] improve

race-detection accuracy by instrumenting programs and collecting information

from actual executions. This information is either analyzed off-line, in the case of

post-mortem techniques, or during execution, in on-the-fly methods. The moni-

tored programs generate complete information about memory locations accessed,

and can detect accesses by unordered blocks of code. Both approaches find appar-

ent, and not necessarily feasible, races.1 The primary drawback of post-mortem

schemes is the large amount of storage required for complete traces of long-running

programs, leading many to prefer the on-the-fly approach.

1Netzer and Miller, however, describe a post-mortem analysis technique that
can improve the accuracy of the detected races by ruling out some apparent races
that are artifacts of earlier races or prohibited by program dependences. [50].

70

5.3 Related Work

Traditional on-the-fly approaches maintain a history of the blocks that have ac-

cessed each shared variable. Code is added to the application program so that at

each reference to shared memory a block compares its label against all labels in

the access history. A race has occurred if the current access conflicts with a pre-

vious access by a concurrent block. For example, in Figure 5.2, assume the read

of X in b3 occurs before the write in b10 . The read leaves its label in the access

history for X. When the write is performed, block b10 examines the access history

and discovers that b3 has accessed X. A race is declared once it is determined that

b3 and b10 are unordered in the POEG.

On-the-fly methods must encode concurrency information such that it can

be quickly consulted at each application read and write. This is usually achieved

through block labeling schemes that reflect the position of each block in the POEG.

A label comparison can then determine the ordering of a pair of blocks.

As described, the on-the-fly approach cannot handle programs with pairwise

synchronization, since the orderings it introduces are not encoded in the block

labels. (The orderings imposed by pairwise synchronizations cannot be known at

compile time, and so cannot be included.) Dinning and Schonberg [25] associate

a coordination list with each block that records information about immediate

ancestors introduced by pairwise synchronization. A block b1 is concurrent with

b2 if their labels reveal them to be unordered and none of the labels in b1 ’s

coordination list are ordered with b2.

All on-the-fly race-detection schemes monitor memory accesses at runtime.

71

They differ in the synchronization primitives they allow, and the way they detect

concurrency. This thesis introduces the term system-level to describe techniques,

including the race-detection protocols, that discover concurrency from system-

level information. In these systems, accesses to the same location are concurrent

if, during execution, they are not separated by a synchronization event.

System-level schemes can detect actual or apparent data races, depending upon

how they determine concurrency. Apparent races are found if the system declares

unordered accesses to be potentially concurrent. If only the accesses that actually

overlap are detected, the system finds actual races. Apparent races are more

useful from a diagnostic standpoint, because, while they can report infeasible

races, they report accesses that could have executed concurrently and not just

those that did. Thus, a single execution without apparent races guarantees that

all executions with the same data dependences will be race free, since no accesses

between barriers conflict.

Since system-level approaches detect concurrency directly, there is no depen-

dence on the POEG or program source code. Race detection can be performed on

programs written in any language, and on library routines for which the source

may not be available. However, the lack of source-level information also means

that system-level schemes cannot take advantage of optimizations requiring knowl-

edge of the source, such as removing accesses that are statically known to be

ordered from race-detection consideration.

72

5.3.1 Traditional Approaches

Dinning and Schonberg [25] have implemented a general scheme for detecting

apparent data races. They support both fork/join and pairwise synchronization,

and obtain concurrency information from the POEG. The race-detection protocols

only support barrier synchronization. Over a set of four benchmarks, Dinning and

Schonberg report program slow-downs of from three to six using access histories

limited to only one or two entries — roughly twice as slow as the protocol-based

approach.

Mellor-Crummey [46] describes a method for encoding the POEG, offset-span

labeling, that has improved space and time bounds for programs that do not

use pairwise synchronization, but gives no performance results. Hood, Kennedy,

and Mellor-Crummey [33], present a technique for detecting apparent data races

in Fortran programs that use barriers and structured synchronization based on

ordered sequences. They keep only one entry in the access histories, and use static

analysis to reduce the number of monitored shared variables. Their slow-downs

are roughly 40%, but the technique requires compiler support.

5.3.2 System-Level Approaches

Perković and Keleher [53] have implemented system-level race detection in CVM,

a page-based release-consistent DSM. Systems that implement release consistency

must maintain ordering information that enables them to make a constant-time

determination of whether two accesses are concurrent. Perković and Keleher ex-

tended the DSM to collect information about referenced locations and check at

73

barriers for concurrent accesses to common locations. Pairwise synchronization

is handled as well as fork/join and barrier, since the DSM system must already

be aware of all forms of program synchronization. On a set of four benchmarks,

slow-downs ranged from a factor of more than five to almost 30.2 The overheads

for the custom protocols in this chapter are less than a factor of three.

Being a page-based approach, Perković and Keleher’s system works well on

a smaller set of applications than the race-detection protocols, since page-based

DSM systems do not efficiently support applications with fine-grained sharing.

Also, their implementation can miss some data races since they detect writes by

discovering modified values. When a page of data is returned home, the system

compares it to an unmodified copy. Differences are flagged as writes, so writes

that do not change the contents of a location are missed. The custom protocols

in this chapter are more precise, as they detect all writes.

Perković and Keleher check for data races only at barriers. There can be a

potentially large lag between the detection of a race and the point at which it

actually occurred, limiting the amount of information available for describing the

race. My protocols detect races as they occur, and have perfect knowledge of at

least one of the conflicting references.

The work in this thesis is most closely related to a hardware-based cache

coherence protocol for CCNUMA machines that Min and Choi [47] designed but

never implemented. Like the race-detection protocols, they limit access histories

2They apparently have improved numbers in a version of the paper accepted
to OSDI, but not yet available.

74

to a single entry and do not support pairwise synchronization. Their scheme

can miss shared-memory accesses unless the compiler organizes shared data such

that at most one word per cache block is used. This restriction would cause

an unacceptable increase in the memory requirements of a program, and waste

precious bandwidth as cache blocks containing a single word of useful data are

communicated between processors. The protocols in this chapter allow arbitrary

data placement by keeping blocks invalid even after fetching data in response to

a fault. Every reference to an invalid block invokes the protocol, so the protocol

sees all references.

5.4 Design

Data-race detection requires two components: knowledge of accessed locations,

and a means of determining concurrency. Approaches for monitoring accessed

memory locations are discussed in Section 5.4.1, and the method used to determine

whether accesses are concurrent is described in Section 5.4.2. Section 5.4.3 shows

how the two are combined to detect races.

5.4.1 Monitoring Accesses

A coherence protocol can be extended to update an access history as part of the

actions it performs in response to an access fault. This provides a method for

monitoring shared-memory accesses. Unfortunately, in existing systems, a proto-

col is not aware of every reference. Once a faulting access is handled, subsequent

75

Source Line Cache Behavior Protocol Behavior
A(1) = ... Write fault Detects write
A(2) = ... Cache hit Does not see
A(3) = ... Cache hit Does not see
A(4) = ... Cache hit Does not see

Table 5.1: Example of missed accesses

accesses to the block can proceed without protocol involvement. This is by de-

sign, since unnecessary invocation of the protocol decreases performance. But

race-detection protocols potentially need to monitor every access or they can miss

data races. Table 5.1 illustrates missed accesses by showing how four consecutive

lines of source code affect the cache and protocol. The write to A(1) causes a

fault and invokes the protocol, which obtains a writable copy of the block. Array

locations A(1)–A(4) are located on the same (now writable) cache block, so sub-

sequent writes hit in the cache and go unnoticed by the protocol. Any data races

involving the final three writes would therefore be missed.

My solution is to keep blocks invalid even after fetching data in response to

a fault. Every reference to an invalid block invokes the protocol, so the protocol

sees all references. As is shown in Section 5.6, the resulting program slow-downs

are quite reasonable. Note that cache and protocol access permissions for a given

block are now independent. A processor can hold (protocol) permission to write

a block even though the block is cached in an invalid state.

Table 5.2 shows the same source lines, now with the cache access permis-

sions and protocol states encountered during writes to A under the new scheme.

76

Source Line Cache Acc. Perm. Protocol Behavior
A(1) = ... Invalid Block is invalid
A(2) = ... Invalid Have exclusive copy
A(3) = ... Invalid Have exclusive copy
A(4) = ... Invalid Have exclusive copy

Table 5.2: Cache access permissions and protocol states

The protocol requests exclusive access to the block when the write to A(1) is

attempted. Previously, the protocol upgraded the cache access permission to

writable once it obtained the exclusive copy, and allowed the write to proceed.

This caused later writes to be missed. The new scheme leaves the block containing

A(1)–A(4) in an invalid state throughout the example. Thus, each write invokes

the coherence protocol and no accesses are missed. Note that writes to A(2)–

A(4) can be handled locally since the processor still holds the exclusive copy of

the block. The protocol simply records the access, then allows it to proceed.

Implementing this scheme requires that blocks tagged invalid by the protocol

hold data and be accessible by the processor. Currently, not all Tempest imple-

mentations guarantee that data values are maintained on invalid blocks.3 One

could still implement the race-detection protocols on non-data maintaining Tem-

pest systems by keeping copies of invalid cache blocks in local memory and using

them to satisfy references. Also, there is discussion of extending the Tempest

interface to include access permissions that cause the protocol to be invoked re-

3The race-detection protocols represent a class of protocols that are difficult to
implement without such guarantees, and make a strong argument for all Tempest
systems being data-maintaining.

77

Source Line Cache Acc. Perm. Protocol Tag Protocol Behavior
A(1) = ... Invalid Invalid Block is invalid
A(2) = ... Writable Invalid Have exclusive copy
A(3) = ... Writable Invalid Have exclusive copy
A(4) = ... Writable Invalid Have exclusive copy

Table 5.3: Access permissions and protocol states

gardless of the protocol state. Such a mechanism could be used to implement the

race-detection protocols without the need for keeping blocks invalid.

Currently, there is a Tempest implementation on the CM-5, Blizzard-S [58],

that does maintain data on invalid blocks. Blizzard-S separates the notion of

protocol access control from the access control maintained by hardware or the

operating-system. At the protocol level, blocks are tagged as invalid, read-only,

or read-write. Blocks can be cached in a writable state (in hardware) despite

being tagged invalid by the protocol. Data values can therefore be maintained on

blocks tagged invalid. Table 5.3 shows the updated permissions for the previous

example.

Blizzard-S [58] implements fine-grained access control by using a binary-re-

writing tool to insert software lookups before loads and stores to shared memory.

The lookups examine a table of block tags to determine whether the pending access

is allowed. If not, the coherence protocol is directly invoked. This is in contrast to

Blizzard-E [58], which leverages fine-grained access control off of operating-system

page protections and block-level ECC codes.

78

Process 1:

A(1) = 1

Process 2:

A(1) = 2

Process 3:

A(2) = 3

Figure 5.3: False race hiding genuine race

Access History Details

The techniques in the previous section ensure the coherence protocol is invoked

on all references to shared data. The protocol can be used to monitor memory

accesses by updating an access history for referenced locations on each invocation.

Like others [33, 46, 47], I choose to keep records of only the most recent read and

write to a variable for reasons of efficiency. Races can be missed as a result, if there

are multiple races involving the same location, but at least one race involving a

location is guaranteed to be caught and can be used to debug parallel programs.

The access histories for each location on a cache block are transferred along

with the data, as blocks move from processor to processor. Entries in the history

can be as simple as a pair of bits, one each to denote whether a location has been

read or written. While bits require less space than byte-entries, they also reduce

the amount of information available for describing a race and can cause spurious

races to be reported. Byte-entries are an improvement over bits with respect to

accuracy of race detection, since they allow the ID of the processor making the

most recent read and write to be recorded. I have implemented both approaches

and discuss the tradeoffs in Section 5.4.3.

79

Race detection can be performed at various granularities. For applications

that manipulate large shared-memory objects, it might be acceptable to keep ac-

cess histories for cache-block sized regions of memory or larger. However, this

degrades race-detection accuracy if the application actually shares data at finer

granularities. Spurious races can be reported in the presence of false sharing,

and can hide genuine races. An example of this behavior is shown in Figure 5.3.

Assuming the race-detection granularity is large enough to encompass both A(1)

and A(2), a spurious race between processes 2 and 3 will be reported during the

write to A(2). When the second write to A(1) is performed, another spurious

race will be reported between processes 1 and 3. The access history at this point,

holding a single entry, no longer records the first write to A(1) and the race be-

tween processes 1 and 2 is missed. Thus, unless race detection is performed at

a granularity as fine as the sharing in a program, the results cannot be consid-

ered accurate. Results for granularities varying from word-level to block-level are

reported in Section 5.6.

In Figure 5.3, the race between processes 2 and 3 is discovered when process

three writes A(2). We therefore have complete information about the second

access of the pair (the sink), but all information about the first access (the source)

must come from the access history. When the protocols detect a race, they report

the PC value of the sink, the memory address involved and, when available, the

ID of the processor that made the source reference. (The ID is not known unless

the access history keeps bytes of information about previous references instead of

bits.) The PC of the first access could be maintained as well, but would at least

80

Process 1:

A(1) = 1

Z = A(1)

Process 2:

Z = A(1)

A(1) = 2

Figure 5.4: Monitoring the first read and write

quadruple the size of the access histories. Since histories are transmitted across the

network with the block data, their size influences the bandwidth requirements of

the protocol. Bandwidth considerations were given priority here over race report

detail.

Once the decision to keep incomplete information about the source reference

is made, the protocol need not be invoked on every access to shared memory.

Only the first read and write after fetching a block must be monitored. The

protocol still detects all races for which these references are the sinks, and the

access-history updates they perform are sufficient to catch races for which these

or any later references are the source. Figure 5.4 shows an interleaving of accesses

to A(1) that produces two races. The read of A(1) by process 2 completes a

race with the write by process 1, and must therefore be monitored. The write

to A(1) by process 2 must also be monitored so the access history for the region

containing A(1) is properly updated. Any subsequent reads or writes by process 2

are redundant (with respect to race detection) since the access history already

records process 2 as the most recent reader and writer. The read by process 1 at

the end of the example is the first after fetching a copy of the block containing

81

A(1), and must be monitored to detect the race with the write on process 2.

By monitoring only the first read and write after obtaining a copy of a block,

we reduce the number of times the protocol must be invoked. This can result in

substantial performance gains, as is shown in Section 5.6. Unfortunately, Tempest

implementations change access tags at the granularity of an entire block. Thus,

we cannot make a block readable, for example, until each race-detection region on

the block has been read. Doing otherwise risks missing races since accesses can

be missed.

5.4.2 Detecting Concurrency

As with other system-level race-detection schemes [47, 53], coherence protocols are

only aware of the processor-level concurrency present in an executing application.

This is independent of the means used to express the parallelism (i.e. fork calls,

DOALL loops, Parmacs CREATE [15]). For the race-detection protocols, accesses by

a pair of processors are concurrent if, during execution, they are not separated by

a synchronization event. Synchronization can involve all processors (a barrier), or

a subset (locks or joins).

The custom race-detection protocols currently only handle system-wide syn-

chronization, as tests for concurrency in programs using only barriers can be

performed efficiently. If access histories are cleared at barriers, non-empty his-

tories imply an access since the last barrier, and testing for concurrency reduces

to testing for non-empty access histories. As is seen in Section 5.4.3, testing the

access history is implicit in the race-detection test performed at each monitored

82

access, so concurrency tests are essentially free. In the race-detection protocol

implementations, processors maintain linked lists of pages containing referenced

blocks. The protocol adds pages to the list as part of the access-history updating

process. At barriers, processors clear the access histories for blocks on pages in

the list and delete the lists.

5.4.3 Detecting Data Races

Section 5.4.1 described techniques to ensure the protocol is invoked on every access

to shared memory, and Section 5.4.2 explained how concurrency is detected. This

section brings the two components together to find apparent data races on-the-fly.

A race-detection protocol has two new responsibilities in addition to its basic role

of obtaining copies of data blocks with appropriate access permissions. At each

monitored access it must test the access history for references conflicting with the

current operation, and it must add the current reference to the update history.

The details of when the tests are performed and how the access history is updated

determine the exact set of races detected by the protocol.

Figure 5.5 illustrates the new functionality. It shows Teapot code for the

protocol handler invoked during a read to a block in an invalid state. (Note that

an invalid protocol state is distinct from an invalid block access tag.) As usual, the

protocol sends a request for a readable copy of the block to the home node. The

Suspend statement specifies the protocol state in which to wait for the response.

Once the readable copy arrives, the handler makes two new calls. The TestAccess

routine checks for conflicts between the current access and those recorded in the

83

Message RD FAULT (id: ID; Var info: INFO; home: NODE)

Begin

Send(home, GET RO REQ, id);

Suspend(L, SetState(info, Cache Inv To RO{L}));
TestAccess(info, READ, id);

SetRdBitsAndLink(info, id);

Thread Resume(id);

End;

Figure 5.5: Sample race-detection protocol handler

access history. SetRdBitsAndLink updates the access history, and ensures that

the page containing the block is in the list of modified pages.

Managing Access Histories

The home node maintains a copy of the access history information for each block,

and sends it with block data in response to requests from remote processors. As

processors manipulate block data, they inspect and update their copies of the

history, and eventually return the modified access history to the home when the

block is relinquished.

Access histories returned with exclusive copies represent the latest history

information in the system, and replace the history data held at the home. If

multiple copies of a block have been in circulation, as when there are concurrent

readers of a block, the histories must be combined at the home. Protocols using

bits to represent access history entires can use a binary OR to merge information

about read accesses. A similar operation can be performed for protocols that mark

read accesses with processor IDs instead of bits. The race-detection protocols

84

Process 1:

A(1) = 1

Process 2:

X = A(1)

Y = A(1)

Figure 5.6: Multiple races

in this chapter use a unique ID to represent reads by multiple processors. This

symbol is left in the access history if more than one of the returning access histories

report a location read.

As will be seen below, the technique for combining information about writes

depends on the exact scheme used to maintain access histories. Information re-

turning with read-only copies can never contain information recording new writes,

but it may be the case that some information about writers is deleted. In the lat-

ter case, the home must delete corresponding information from its copy of the

access history. Schemes using bits can accomplish this with a binary AND.

Controlling Reported Races

If protocol handlers tested for races on every access, a large number of uninter-

esting races could be declared. Consider the references shown in Figure 5.6. The

first read by process 2 will be discovered to conflict with the write by process 1,

as will the second. The second read is unordered with respect to the write, but

is less interesting from a debugging point of view since it is strictly ordered with

respect to the earlier read. Any races involving the second read must involve the

first. Avoiding detection of these additional, uninteresting races is desirable, as it

85

leaves fewer races to be considered by the user. The race-detection protocols al-

ready report a subset of the apparent data races in an execution, since they bound

access histories. Reporting even a single race from the set involving each location

is sufficient for notifying users of program errors, and reporting large numbers of

races can be counterproductive as it forces users to examine an increased amount

of information.

In general, an access A is the source for a (possibly empty) set S of races.

We will say that the set S is covered by the race R whose sink is the first access

to conflict with A. For example, in Figure 5.6, the write to A(1) is the source

of races with both reads by process 2. The read of A(1) in the assignment to X

covers the set of races, as it comes first. Our goal is to report only the covering

race from each set, when it can be found without unreasonable overhead.

Covering races bear a similarity to Netzer and Miller’s first races [50], as they

capture the notion of an initial race involving a given memory location. The

key difference is that covering races are reported each time a processor acquires

a block. Since processors can repeatedly return and reacquire blocks, the set

of covering races is much larger than the set of first races. Covering races are

therefore less useful from a diagnostic point of view, but help reduce the number

of reported race events.

Finding the covering races involves determining an order between the sinks

in each set of races. This can be done easily on-the-fly. Accesses are ordered

by the program text if they occur on the same processor. Accesses on different

processors are ordered by the time at which they request a copy of the accessed

86

Message RD FAULT (id: ID; Var info: INFO; home: NODE)

Begin

Send(home, GET RO REQ, id);

Suspend(L, SetState(info, Cache Inv To RO{L}));
If (not(BeenRead(info, id))) Then

TestAccess(info, READ, id);

Endif;

SetRdBitsAndLink(info, id);

Thread Resume(id);

End;

Figure 5.7: Guarded race-detection protocol handler

block from the home node. The ordering information can be used to restrict the set

of detected races by determining when to call TestAccess. If the current processor

has already read a location, for example, there is no reason to test subsequent

reads as the first read is sufficient to discover the covering race. Figure 5.7 shows a

version of the protocol handler in which the access test is guarded by a conditional

that only applies the test during the first read.

Unfortunately, guarding the access test does not always limit detected races

to covering races. Implementing the BeenRead guard requires a history of local

accesses be maintained by each processor, as well as the history of accesses made

by other processors. BeenRead is true if the local history reflects a previous read.

Local histories must be cleared each time a block is acquired or the guarding

mechanism can cause races to be missed. False sharing at the block granularity

can cause non-covering races to be declared by forcing a block to be relinquished

and reacquired, clearing the local history in the process. This is illustrated in

87

Process 1:

A(1) = 1

A(2) = 2

Process 2:

Z = A(1)

Z = A(1)

Figure 5.8: Multiple races due to false sharing

Figure 5.8. The write to A(2) causes the block to be taken away from process 2

after its first read of A(1). The second read reacquires the block and performs a

TestAccess, because the local history was cleared when the block arrived. The

second read therefore declares a (non-covering) race with the write of A(1).

This example shows that the guarding technique is not always accurate enough

to detect just the covering races. The race-detection protocols take an improved

approach and alter access histories once races are found. Instead of using guards

to limit tests to the access history, TestAccess is extended so that, when a race is

detected, the source access is removed from the history. The first read in Figure 5.8

now declares a race and deletes the record of the write to A(1) by process 1. When

the second read is performed, TestAccess is called but finds no race. No more

races will be detected involving A(1) until another processor makes an access.

The “history rewriting” approach more accurately limits detection to covering

races, but still detects non-covering races when there are concurrent readers fol-

lowing a write. Figure 5.9 shows processes 2 and 3 consuming a value produced

by process 1. Process 2 acquires a readable copy of the block from the home when

it attempts to read A(1). Along with the block data comes the access history

88

Process 1:

A(1) = 1

Process 2:

X = A(1)

Process 3:

Y = A(1)

Figure 5.9: Multiple readers after a write

showing process 1 as a writer. When process 2 calls TestAccess, it discovers a

conflict with the write, declares a (covering) race, and removes evidence of the

write from the access history. But news of this deletion does not reach process 3.

The history altered by process 2 remains local until the block is returned to the

home. When process three fetches a copy of the block, it contains the original

history showing the write by process 1. Thus, both of the readers declare races.

Declaring races at both reads is not unreasonable, since both are unordered

with respect to the write and constitute apparent data races. It falls short of

the goal of only declaring covering races, but the notion of a covering race was

introduced only to reduce, where possible, the number of reported races. Covering

races could be found, exclusively, if one were willing to permit a single reader at a

time, or implement protocol schemes whereby readers after the first were required

to obtain the most recent access history from earlier readers. The small reduction

in detected races these techniques offer was not considered valuable enough to

offset the performance overheads they would command.

Note that false sharing can now potentially bring us closer to the goal of

detecting covering races, instead of causing non-covering races to be declared

89

as it did with the guarding approach. Since false sharing forces processors to

prematurely relinquish blocks, it can cause modified access histories to become

visible sooner that they would have otherwise. In Figure 5.9, if false sharing had

caused process 2 to relinquish its block immediately after modifying the access

history in Figure 5.9, it might reached the home in time to be passed to process 3.

Bits Versus Bytes

Either bits or bytes can be used as entries in an access history. Bits have the

advantage of requiring less space than bytes, and can be manipulated efficiently,

but they are inferior to bytes in several respects. Bytes record the ID of the

processor that made an access. This provides additional information about the

source reference when races are detected. More importantly, it allows processors

to distinguish between their accesses and accesses performed by other processors.

Both techniques are described here since byte-schemes could potentially be more

expensive to implement on some systems.

Schemes that use bits must keep separate histories for accesses performed lo-

cally and remotely. Accesses performed before the block was obtained are recorded

in the “past” history, while the “present” history records local accesses. If past

and present references were indistinguishable, consecutive accesses by a single pro-

cessor could mistakenly be declared a race. Schemes that use bytes to implement

access histories can easily make this distinction without the separate histories.

In the bit-history schemes, past and present histories are combined and re-

turned with the data when a block is surrendered. Thus, once a block is relin-

90

Process 1:

A(1) = 1

X = A(1)

Process 2:

A(2) = 2

Figure 5.10: Spurious race caused by false sharing

X = A(1)

A(1) = 1

Read Req

Read Resp
r w

r w

Write Req r w

r w

Write Resp

r w

R/W Race

Home

Figure 5.11: Example of a self race

quished and reacquired, processors cannot distinguish their accesses from others

in the history. Figure 5.10 shows a spurious “self race” being declared as a result

of false sharing. Process 1 writes A(1) and sets the write bit in the present ac-

cess history. Process 2 acquires the block containing both A(1) and A(2). When

process 1 reacquires the block to read A(1), it finds the write bit set in the past

history and declares a race — even though the write was actually performed by

process 1.

As shown in Figure 5.11, self races can arise even without false sharing when a

processor reads and writes a location. At the read of A(1), the processor acquires

91

a read-only copy of the block and sets a bit in the present history. When the

processor tries to write the location, a request for write permission must be sent

to the home. To ensure that races elsewhere in the system are not missed, the

write request must carry a copy of the access history bits. When the response to

the write request arrives, it contains a set read bit, but the processor cannot tell

whether it was set locally or by a remote processor, and a race is declared.

Schemes that use bytes to record access-history entries have no problems with

self races, since they can distinguish their contributions from those of other pro-

cessors even after a block has been relinquished and reacquired due to false sharing

or other mechanisms. Both approaches are evaluated in Section 5.6, since the bit-

history schemes consume less memory, and require less information be sent across

the network with block data.

5.4.4 Detected Races

The race-detection protocols find apparent races instead of actual, since their

access histories allow them to detect accesses that could have overlapped as well as

those that actually did. That the protocols find apparent races can be shown using

the single-access execution view ([48]), where the events of interest are individual

accesses to shared memory. Without access histories, protocols would be limited to

detecting actual data races involving events (accesses) that executed concurrently.

The histories allow detection of conflicting events that are unordered by barrier

synchronization. It is assumed that, because of the lack of synchronization, the

events could have occurred simultaneously and therefore represent a race. Since

92

this ignores data dependences that could potentially order the events, the detected

races are apparent and not necessarily feasible.

As with all approaches that bound access histories [33, 46, 47], the protocols

detect a subset of the apparent races present in an execution. Races can be

missed if there are multiple races involving the same location, but at least one

race involving a location is guaranteed to be caught and can be used to debug

parallel programs. Finding a subset of the apparent races is not necessarily a

handicap. Experience with the race-detection protocols has shown that reducing

the number of reported races makes the protocols more useful as diagnostic tools,

since users need examine less information, and reporting even a single race for a

location is sufficient to warn the user of an error. The effort to report covering

races (Section 5.4.3) is an attempt to further limit the number of races reported.

It is not possible to precisely describe the subset of the apparent races that

will be detected, since the protocols use system-level information to detect races,

and an application’s system-level behavior can vary from run to run. The races

detected depend upon the ordering of accesses to a given location, and can there-

fore change from run to run. This is not problematic, as the protocols are still

guaranteed to find at least one of the set of races involving a location — including

a first race [50] for each location.

A larger concern is the selection of race-detection granularity. As Section 5.4.1

shows, race-detection accuracy is compromised when the granularity at which

races are detected is larger than that at which data is shared in an application.

To be safe, detection should therefore be performed at the word-level unless users

93

are sure that larger granularities are appropriate.

Finally, the custom race-detection protocols currently only recognize system-

wide synchronization (barriers). This limitation is not as severe as it might first

appear. Atomicity of critical sections can often be ensured statically, without any

need for runtime monitoring. Four of the five benchmarks used in Section 5.6

are amenable to this approach, as the pairwise synchronization operations are

clearly identifiable, and there are no problems with aliasing or indirection that

would dilute the precision of static analysis. Statically analyzing the remaining

benchmark would require interprocedural analysis, as it calls functions from within

critical sections.

Applications with additional forms of synchronization can be run on the pro-

tocols, but spurious races may be declared since only the ordering constraints im-

posed by barriers are recognized by the race-detection mechanisms. As is shown in

Section 5.6.3, these spurious races can be effectively removed in a post-processing

phase.

5.5 Verification

The formal verification tool associated with Teapot [22, 24] was used to ensure

both that the race-detection protocols maintained consistent data, and that they

successfully caught data races. The verification process proceeded in two steps.

First, the basic protocol was designed and tested without any race-detection func-

tionality. Even without race-detection features, the protocol is significantly more

complex than the Stache protocol, since it must keep blocks in an invalid state

94

until each location in a block has been read or written. Once the underlying proto-

col was working correctly, mechanisms for recording access histories and detecting

races were added. The details of the race-detection functionality left opportunities

for error, so efforts were made to verify the protocol correctly caught apparent

data races as well.

The verification process exhaustively explores a state space, the size of which is

related to the complexity of the protocol and system configuration being verified.

This made the protocols that use bits for access-history entries more attractive

than those that use bytes. A verification state for bit schemes can be encoded

in less space, allowing more states to be explored in a given amount of memory.

Also, fewer states are required to exhaustively verify the protocol since its access

histories contain less information than the byte schemes. (Access histories in bit

schemes hold a smaller number of distinct entries than do byte schemes, so fewer

states need be explored.) All verification attempts were therefore on a bit-history

protocol, with one location per block. Differences between the bit-history and

byte-history protocols are confined to the support routines that manage access

histories — protocol states and transitions are identical. Thus, ensuring that the

bit-history protocols function correctly gives increased confidence that the byte

scheme works as well.

Informally, verification exhaustively tests a protocol by simulating a stream

of loads and stores to shared memory. Since the verification system has perfect

knowledge of the accesses performed, it can be extended to recognize data races

along with the protocol. The system was modified to maintain access histories for

95

Processors Locations Reordering States Rules Seconds

2 1 0 3,866 10,288 11.9
2 1 1 10,084 25,948 31.6
2 1 2 17,448 50,068 68.4

2 2 0 947,502 2,978,195 3,737.8
2 2 1 947,509 2,535,105 3,285.1
2 2 2 852,751 2,190,663 2,800.8
3 1 0 778,662 1,944,167 3,506.9

Table 5.4: Protocol verification results

each memory location, and check these histories for conflicting accesses at each

simulated reference. Whenever the verification system found a race, it tested the

protocol to see that it also detected the race. This guaranteed that the protocol

caught all apparent data races that could be found with an access history of size

one, but left open the possibility that it might generate spurious race reports

as well. Since bit schemes do generate spurious race reports, this is exactly the

behavior required.

Table 5.4 presents the results of the verification runs. The first three columns

describe the tested configuration. Systems with two or three processors, one or two

memory locations, and varying amounts of network reordering were considered.

The remaining columns list the size of the verification state space, the number

of rules the system fired in exploring the state space, and the verification time

in seconds. Entries in italics are for runs that could not exhaustively explore the

required state space in 150MB of memory, and therefore did not complete. Only

configurations with two processors and one memory location could be exhaustively

96

Application Description # Lines Synchronization

Appbt 3D CFD Solver 5,100 Locks, Barriers
Em3d EM Wave Propagation 2,500 Two locks, Barriers
Gauss Gaussian Elimination 900 One lock, Barriers
LCP Linear Complementarity 1,550 One lock, Barriers
Water Molecular Simulation 2,400 Locks, Barriers

Table 5.5: Benchmark applications

verified. While this is insufficient to guarantee that the protocol works correctly

on larger configurations, it greatly increases confidence that it will do so. Verifying

as much as possible of other configurations adds to this confidence, as it ensures

that there are no errors in the explored space.

5.6 Performance

This section describes the performance of the custom race-detection protocols on

a set of five benchmarks. Schemes that use bytes to record access-history entries

are shown to produce fewer spurious races, in general, than bit-schemes, though

the difference on races missed is much smaller. Slow-downs range from zero to less

than a factor of three. Actual program errors were found in two of the benchmarks,

Appbt and LCP, by the custom race-detection protocols.

97

5.6.1 Benchmarks

Each of the benchmarks used to test the race-detection protocols (Table 5.5) use

both locks and barriers for synchronization. Since the race-detection protocols

only recognize barrier synchronization, critical sections implemented by locks ap-

pear to consistently fail from a race-detection point of view. This causes detection

of spurious races involving references in critical sections, and these were mechani-

cally separated from the others when trying to determine how useful and effective

the protocols are at finding races in programs with barrier synchronization.

Appbt is a kernel from the NAS parallel benchmarks representing the compu-

tation and communication found in 3D computational fluid dynamics problems.

It makes frequent use of both locks and barriers for synchronization. Em3d mod-

els the propagation of electromagnetic waves through objects in three dimensions.

The simulation is formulated as a computation on a bipartite graph with directed

edges, and uses only barrier synchronization during the computation phase. The

graph-building phase uses two locks. Gauss performs gaussian elimination and

backsubstitution. It uses a single lock to implement a reduction across proces-

sors, and barrier synchronization elsewhere. LCP is a parallel implementation of

the linear complementarity problem, written by Satish Chandra. Only barrier

synchronization is used during the computation, though a single lock is used to

combine normalization information at the end. Water is one of the Splash [60]

benchmarks, and simulates a body of water molecules. The version used here is the

original n2 application, and uses both locks and barriers during the computation.

98

5.6.2 Experimental Setup

All experiments were performed on a 32-processor CM-5 using the Blizzard-S [58]

implementation of Tempest [55]. The baseline against which the race-detection

protocols were compared was the Teapot-generated version of the Stache protocol.

All protocols maintained coherence at the 32-byte block granularity, and race-

detection granularities varied from 4 to 32 bytes. Schemes that used both bits

and bytes to represent access history information were tested.

The race-detection protocols will be referred to by names of the form Race-

Type -Gran, where Type is either “Bit” or “Byte” and describes the scheme used to

record accesses histories, and Gran is the race-detection granularity. For example,

Race-Byte-4 uses the byte scheme, and detects races at the four-byte granularity.

Five runs of each application were made on each protocol. Normal run-to-

run differences in the ordering of accesses to shared memory influenced the races

exhibited, so the total number of detected races varied slightly from run to run.

Of the five runs, the one reporting the largest total number of races was selected

in each case. In the case of a tie, the run completing in the shortest amount of

time was chosen.

5.6.3 Race Detection Results

Table 5.6 summarizes the races found by Race-Byte-4, the most accurate of the

race-detection protocols. The number of race events is the total number of ap-

parent data races detected. Since the same pair of source-line references can be

involved repeatedly in races with each other, more useful metrics are the unique

99

Race Unique Unique Unique Excluding
Application Events Addresses References Lines Crit. Sec.

Appbt 723,333 43,069 163 91 1
Em3d 149,127 43,034 13 3 0
Gauss 26,167 1 2 2 0
LCP 1,078,289 4,161 13 9 2
Water 2,466,122 4,616 36 25 1

Table 5.6: Races detected by Race-Byte-4

memory addresses and references involved in races. After an application runs

to completion, the protocol generates a report of detected races, containing the

unique addresses and references, in addition to the total number of race events. I

have written tools that annotate source code on the basis of this information, and

highlight lines involved in races. The number of lines is smaller than the number

of references, since each line can contain multiple references. The table also shows

the number of source lines remaining after discarding those in critical sections.

The remaining line in Appbt represented an actual program error, as did the two

in LCP. In neither case were the authors aware of the missing synchronization.

The line in Water was the result of a synchronization scheme (spinning on a shared

memory value) that was not based on locks or barriers.

Pseudocode summarizing the program error found in Appbt is shown in Fig-

ure 5.12. An identical copy of the loop shown is run on every processor in the

system. During each iteration, an array is updated and a normalization calcula-

tion is performed. The update is performed in parallel, but the normalization,

which depends on results from the update phase, is all done on a single processor.

100

FOREACH timestep DO {
Barrier();

Update Array();

if (Processor ID == 0) {
Normalize And Print();

}
}

Figure 5.12: Pseudocode showing program error

Without a barrier between these two steps, the update and normalization phases

can (and do) overlap. In this case, the final answer is not affected, but the output

generated during the normalization phase is unpredictable. Placing a barrier be-

tween the update and normalization phases solved the problem. The race in LCP

was similar, and also involved the overlap of computation and normalization.

Differences in race-detection granularities and schemes used to maintain access

histories affect the accuracy of race detection. Figure 5.13 shows spurious races

detected by each of the race-detection protocols. The data was generated by

assuming that, for all benchmarks, Race-Byte-4 correctly identified the unique

references involved in races. Any additional references were considered false. The

graphs show spurious races as a percentage of the total number of non-spurious

races. As expected, the approaches that use bit-history schemes can be seen to

report many more false races than the byte-history schemes do, even at the finest

granularities.

Spurious races are a nuisance, but are not as serious as races that are missed.

Figure 5.14 shows the missed races for each benchmark, again assuming that Race-

101

4 8 16 32
Detection Granularity (Bytes)

0%

100%

200%

300%

400%

P
er

ce
nt

 o
f A

ct
ua

l (
R

ac
e−

B
yt

e−
4)

Bit History

Appbt
Em3d
Gauss
LCP
Water

4 8 16 32
Detection Granularity (Bytes)

0%

100%

200%

300%

400%

P
er

ce
nt

 o
f A

ct
ua

l (
R

ac
e−

B
yt

e−
4)

Byte History

Appbt
Em3d
Gauss
LCP
Water

Figure 5.13: Spurious races reported

4 8 16 32
Detection Granularity (Bytes)

0%

10%

20%

30%

40%

P
er

ce
nt

 o
f A

ct
ua

l (
R

ac
e−

B
yt

e−
4)

Bit History

Appbt
Em3d
Gauss
LCP
Water

4 8 16 32
Detection Granularity (Bytes)

0%

10%

20%

30%

40%

P
er

ce
nt

 o
f A

ct
ua

l (
R

ac
e−

B
yt

e−
4)

Byte History

Appbt
Em3d
Gauss
LCP
Water

Figure 5.14: Races missed

102

Byte-4 finds all apparent races. The results show an increase in missed races as

the granularity increases, as expected. There is little difference between the the

bit-history and byte-history approaches. This is not surprising, as the bit-history

schemes should, in general, catch at least as many races as the byte-history.

Summary

The results validated the protocol-based approach to race detection. The protocol

scheme found actual program errors in two of the five benchmarks, despite the

presence of pairwise synchronization. As expected, byte-history schemes reported

fewer spurious races than the bit-history schemes, and increasing granularities

caused races to be missed.

5.6.4 Performance Results

Figures 5.15 and 5.16 show the slow-downs for the five benchmarks on each of the

custom protocols. Slow-downs range from almost a factor of three on Gauss, to

slight improvements in Appbt and LCP. The lessons learned during the perfor-

mance tuning of the LCM protocols (Chapter 3) apply here as well. The perfor-

mance differences between benchmarks are almost entirely tied to network con-

tention on the CM-5.

A convenient way to assess contention is to measure the average number of

attempts required to inject a message into the network. The data on the number

of tries per send is shown in Figure 5.7. Both of the applications that see speedups

have extremely high levels of contention when run on the Stache protocol, but see

103

4 8 16 32
Detection Granularity (Bytes)

0.0

1.0

2.0

3.0

S
lo

w
do

w
n

Gauss

Bit−History
Byte−History

4 8 16 32
Detection Granularity (Bytes)

0.0

1.0

2.0

3.0

S
lo

w
do

w
n

Water

Bit−History
Byte−History

Figure 5.15: Slow-downs for Gauss and Water

Application Stache Byte-4 Byte-8 Byte-16 Byte-32

Appbt 65.7 41.6 54.5 60.7 63.0
Em3d 1.3 1.3 1.1 1.1 1.1
Gauss 1.4 1.8 1.7 1.5 1.3
LCP 13.6 7.1 6.9 6.5 8.1
Water 1.3 2.0 1.2 1.2 1.3

Table 5.7: Network contention (tries per send)

lower levels of contention when race-detection protocols are used.

In general, as race-detection granularities decrease, protocols are less likely

to access each race-detection region on a block. This implies an increase in the

number of faulting accesses, since fewer blocks can be upgraded to read-only or

writable states. The bulk of the extra faults can be handled locally, without

sending or receiving data, and so execute quickly. At each fault, the Tempest

system pulls waiting messages out of the network and queues them for delivery.

104

4 8 16 32
Detection Granularity (Bytes)

0.0

0.5

1.0

1.5

2.0

S
lo

w
do

w
n

Appbt

Bit−History
Byte−History

4 8 16 32
Detection Granularity (Bytes)

0.0

0.5

1.0

1.5

2.0

S
lo

w
do

w
n

LCP

Bit−History
Byte−History

4 8 16 32
Detection Granularity (Bytes)

0.0

0.5

1.0

1.5

2.0

S
lo

w
do

w
n

Em3d

Bit−History
Byte−History

Figure 5.16: Slow-downs for Appbt, LCP, and Em3d

105

Application Clearing Histories Access Tests Total

Appbt 0.15% 0.68% 0.83%
Em3d 1.10% 0.29% 1.39%
Gauss 7.56% 0.46% 8.02%
LCP 0.38% 0.51% 0.89%
Water 0.16% 0.76% 0.92%

Table 5.8: Race-detection overheads

Thus, faulting more often can be beneficial as it takes pressure off of the network

buffers and lowers contention. This mechanism is behind the decreased contention

numbers for Appbt and LCP.

But the race-detection protocols transfer more data than Stache does, since

they must include access histories. This can exacerbate contention in some situa-

tions, as with Gauss and Water. Since these two benchmarks have low contention

initially, increasing the number of access faults does not help. Instead, the in-

crease in network traffic drives up contention and gives sizeable slow-downs on

the race-detection protocols.

In Water, there is a large discontinuity between the slow-downs for four and

eight bytes. This is because all data in Water is double-precision. When race

detection is performed at the four-byte granularity, the protocol assumes that all

accesses (even of eight-byte quantities) touch four bytes at a time. Since there

are always unreferenced four-byte quantities on each block, blocks can never be

upgraded to read-only or writable and the protocol must fault on every reference.

Network contention is the dominant factor in determining how well an ap-

106

Total Refs(M) Stache Race-Byte-4 Dilation
App. Read Write Read Write Read Write Read Write

Appbt 471 16 0.1% 2.7% 58.9% 100.0% 402 38
Em3d 3 9 33.7% 11.0% 100.0% 100.0% 3 9
Gauss 89 47 0.7% 0.2% 56.1% 99.7% 83 574
LCP 138 1 1.0% 16.3% 74.1% 100.0% 76 6
Water 135 16 0.7% 4.2% 98.7% 100.0% 141 24

Table 5.9: Statistics on read and write faults

plication will fare on the data-race protocols on the CM-5. The per-processor

overheads introduced by race detection, shown in Table 5.8, are all quite small.

The additional cycles spent clearing access histories at barriers and performing

tests for races account for less than 1% of the total execution time for three of

the five benchmarks. This gives reason to hope that the largest slow-downs will

decrease on systems with greater bandwidth, such as networks of workstations.

Table 5.9 reports data on the fraction of the accesses made by each application

that fault and invoke the protocol. The total number of accesses were measured

with a version of Race-Byte-4 that instrumented all accesses. This was used as a

baseline against which to compare the number of faulting accesses for Stache and

Race-Byte-4. The final columns report the relative increase in monitored accesses

when using Race-Byte-4. The data indicates that the optimization of upgrading

a block to read-only or writable once each region has been accessed only slightly

decreases the number of faulting accesses when using Race-Byte-4.

107

Summary

The performance results were surprising in several respects. First, program speed-

ups were not anticipated. It should be stressed, however, that they were the result

of system-dependent factors (i.e. the shallow network on the CM-5). Also, the

performance of the bit-history and byte-history schemes was nearly equivalent. It

was expected that the additional bandwidth required to support the byte-history

approach would result in larger slow-downs than seen with bit histories. Finally,

while the number of access faults was expected to increase when using the race-

detection protocols, the magnitude of the increase in some cases was surprising.

The relatively minor slow-downs are impressive given the dilations in Table 5.9.

5.7 Conclusions

This chapter has described the design, verification, and implementation of a family

of custom cache-coherence protocols that perform on-the-fly detection of apparent

data races for programs with barrier synchronization. Efficient detection of data

races is possible on DSM systems because a mechanism is already in place to in-

voke the coherence protocol in response to shared-memory accesses. The protocol

can be extended to maintain access histories, detect concurrency, and watch for

data races. Protocol-based race detection schemes are completely independent of

program source code, and race detection can be performed on programs written

in any language and on library routines for which the source may not be available.

Overheads for these protocols range from zero to less than a factor of three,

108

though there is reason to believe that this performance will improve on systems

with greater bandwidth. In comparison, Perković and Keleher [53], the only other

system-level race-detection implementation, report slow-downs ranging from five

to 30. The on-the-fly method of Dinning and Schonberg [25] has slow-downs rang-

ing from three to six, though they handle a larger class of synchronization. Hood,

Kennedy, and Mellor-Crummey [33] have lower overheads than the protocol-based

techniques, at approximately 40%, but require compiler involvement.

109

Chapter 6

Conclusions

Distributed Shared-Memory (DSM) computers, which partition physical mem-

ory among a collection of workstation-like computing nodes, are emerging as the

way to implement parallel computers, as they promise scalability and high per-

formance. Shared-memory DSM machines use a coherence protocol to manage

the replication of data and to ensure that a parallel program sees a consistent

view of memory. A protocol determines, to a large extent, the performance of a

shared-memory program since communication occurs through loads and stores to

shared data.

Applications have very different patterns of communication and no single,

general-purpose protocol suits all programs. This has prompted interest in sys-

tems that enable users to select a coherence protocol and, more recently, in sys-

tems in which the protocol is implemented in software instead of being fixed in

hardware. DSM machines with software-implemented coherence protocols provide

opportunities for a variety of more complex and application-specific protocols and

110

allow for protocols that do not just ensure consistent memory, but also provide

new functionality and semantics.

Parallel programming has long faced a tension between the goals of high per-

formance and ease of use. Languages and tools can make parallel computers

easier to use, but concerns about their efficiency have limited their usage. This

thesis demonstrates that some high-level languages and tools can be implemented

more efficiently by taking advantage of the cache coherence protocols that underly

software DSM machines, thereby improving both performance and ease of use.

6.1 Thesis Summary

As proof that protocol support can improve the performance of parallel language

implementations, this thesis has presented the design, implementation, and ver-

ification of a family of custom protocols that efficiently support a large-grain

data-parallel language C**. In C**, to prevent data access conflicts, processors’

modifications of memory must be kept local until all parallel tasks complete.

Loosely Coherent Memory systems transparently copy modified locations at the

protocol level, and efficiently reconcile these copies at the end of each parallel

phase. On programs for which static analysis is imprecise, LCM support im-

proves performance from a few percent up to a factor of 3, and reduces memory

overheads from a factor of 2 to a factor of 5 over a compiler-copying scheme.

LCM memory systems are more generally useful as well. LCM’s update mech-

anism and its ability to reconcile multiple copies of data can significantly reduce

overheads associated with fine-grained sharing of data. On a set of four applica-

111

tions written in C, LCM support improved overall performance by up to a factor

of 3, and increased the performance of selected program phases by as much as a

factor of 4.7.

Finally, this thesis described the design and implementation of custom cache-

coherence protocols that perform on-the-fly detection of actual data races for

programs with barrier synchronization. Efficient detection of data races is possible

on DSM systems because a mechanism is already in place to invoke the coherence

protocol in response to shared-memory accesses. The protocol was extended to

maintain access histories, detect concurrency, and watch for data races. Overheads

in execution time for the race-detection protocols range from zero to less than a

factor of three — a significant improvement over comparable approaches. Race-

detection protocols found actual program errors in two applications.

6.2 Future Work

The work in this thesis can be extended in a number of ways. First, LCM could

be modified to support C** programs containing nested parallelism. With nested

parallelism, modifications are hidden from other invocations, but must remain

visible to an invocation’s child processes. Read requests must therefore be satisfied

by the parent process, and not necessarily the data’s home. As nesting levels

increase, read requests may have to be propagated up the ancestor tree in search

of the correct value.

Also, LCM performance could potentially be improved by optimizing for the

case where only one modified copy of a given block is created. Currently, there

112

is no way to know how many processors will modify a block, so an accumulator

copy is created and initialized when the home receives the first modified block.

This overhead could be eliminated by delaying the creation of an accumulator

copy until a second modified copy arrived. This could most easily be done with

LCM-MCC, since modified blocks are already flushed in bulk and buffered. It

may be possible to sort buffered blocks or otherwise determine which modified

copies are unique.

Applications like LCP mark large regions of data before performing modifica-

tions. Currently, memory blocks are requested individually, and the mark directive

does not return control to the processor until all blocks in the region have been ac-

quired. In these cases, the mark could instead be treated as a prefetch. Processors

could be allowed to proceed immediately, and would only delay if they attempted

to access a block that had not yet arrived. This scheme has the advantage of

allowing the prefetched data to be sent by the home in bulk as well.

Chapter 4 showed that LCM support could improve performance in languages

other than C**, but the improvements were obtained by manually inserting mem-

ory-system directives into applications. A tool for automatically inserting these

directives would ease the burden of correctly augmenting applications. Points at

which applications acquire a lock before modifying a value suggest that LCM sup-

port is potentially useful, as it can efficiently combine modifications and eliminate

locks. Determining how and where to use the update facility is more difficult, and

requires that communications patterns be statically analyzable.

Finally, the race detection protocols would be much more useful if they were

113

extended to handle pairwise synchronization. Barrier synchronization is easier to

handle, since accesses by a processor between barriers are unordered with respect

to all other processors in the system. With pairwise synchronization, tests for

races are more involved since prior accesses to a location may or may not be races

depending upon the pairwise orderings imposed by synchronization. If variables

are associated with locks, access histories could be extended to contain information

about locks held by a processor during an access. Races are caused by processors

referencing locations without first acquiring the necessary lock. Also, the more

general vector time-stamp [37] technique could be used to detect orderings imposed

by pairwise synchronization, but at the cost of an increase in the amount of data

transmitted with each block.

114

Bibliography

[1] Sarita V. Adve and Mark D. Hill. A Unified Formalization of Four Shared-
Memory Models. IEEE Transactions on Parallel and Distributed Systems,
4(6):613–624, 1993.

[2] Anant Agarwal, Ricardo Bianchini, David Chaiken, Kirk L. Johnson, David
Kranz, John Kubiatowicz, Beng-Hong Lim, Kenneth Mackenzie, and Donald
Yeung. The MIT Alewife Machine: Architecture and Performance. In Proc.
of the 22th Annual Int’l Symp. on Computer Architecture (ISCA’95), pages
2–13, June 1995.

[3] Anant Agarwal, Richard Simoni, Mark Horowitz, and John Hennessy. An
Evaluation of Directory Schemes for Cache Coherence. In Proc. of the 15th
Annual Int’l Symp. on Computer Architecture (ISCA’88), pages 280–289,
1988.

[4] Randy Allen, Donn Baumgartner, Ken Kennedy, and Allan Porterfield.
PTOOL: A Semi-Automatic Parallel Programming Assistant. Technical Re-
port TR86-31, Rice University, Department of Computer Science, January
1986.

[5] Todd R. Allen and David A. Padua. Debugging Fortran on a Shared Memory
Machine. In Proceedings of the 1987 International Conference on Parallel
Processing, pages 721–727, University Park PA, August 1987.

[6] Cristiana Amza, Alan L. Cox, Sandhya Dwarkadas, Pete Keleher, Honghui
Lu, Ramakrishnan Rajamony, Weimin Yu, and Willy Zwanepoel. Tread-
Marks: Shared Memory Computing on Networks of Workstations. IEEE
Computer, 29(2):18–28, February 1996.

[7] Andrew W. Appel, John R. Ellis, and Kai Li. Real-time Concurrent Collec-
tion on Stock Multiprocessors. In Proceedings of the SIGPLAN ’88 Confer-

115

ence on Programming Language Design and Implementation (PLDI), pages
11–20, June 1988.

[8] Andrew W. Appel and Kai Li. Virtual Memory Primitives for User Pro-
grams. In Proceedings of the Fourth International Conference on Architec-
tural Support for Programming Languages and Operating Systems (ASPLOS
IV), pages 96–107, April 1991.

[9] William F. Appelbe and Charles E. McDowell. Anomaly Reporting: A Tool
for Debugging and Developing Parallel Numerical Algorithms. In Proceedings
of the First International Conference on Supercomputing Systems, pages 386–
391, 1985.

[10] H. E. Bal, M. F. Kaashoek, and A. S. Tanenbaum. Orca: A Language
For Parallel Programming of Distributed Systems. IEEE Transactions on
Software Engineering, 18(3):190–205, March 1992.

[11] Sandra Johnson Baylor, Kevin P. McAuliffe, and Bharat Deep Rathi. An
Evaluation of Cache Coherence Protocols for MIN-Based Multiprocessors. In
International Symposium on Shared Memory Multiprocessing, pages 230–241,
Tokyo, April 1991.

[12] Monica Beltrametti, Kenneth Bobey, and John R. Zorbas. The Control
Mechanism for the Myrias Parallel Computer System. Computer Architecture
News, 16(4):21–30, September 1988.

[13] John K. Bennett, John B. Carter, and Willy Zwaenepoel. Munin: Distributed
Shared Memory Based on Type-Specific Memory Coherence. In Second ACM
SIGPLAN Symposium on Principles & Practice of Parallel Programming
(PPOPP), pages 168–176, February 1990.

[14] B. N. Bershad and M. J. Zekauskas. Midway: Shared Memory Parallel Pro-
gramming with Entry Consistency for Distributed Memory Multiprocessors.
Technical Report CMU-CS-91-170, School of Computer Science, Carnegie-
Mellon University, September 1991.

[15] James Boyle, Ralph Butler, Terrence Disz, Barnett Glickfieldand Ewing Lusk,
Ross Overbeek, James Patterson, and Rick Stevens. Portable Programs for
Parallel Processors. Holt, Rinehart and Winston Inc., 1987.

[16] David Callahan and Jaspal Subhlok. Static Analysis of Low-Level Synchro-
nization. Proceedings of the ACM SIGPLAN/SIGOPS Workshop on Parallel

116

and Distributed Debugging, published in ACM SIGPLAN Notices, 24(1):100–
111, January 1989.

[17] J. B. Carter, J. K. Bennett, and W. Zwaenepoel. Implementation and Per-
formance of Munin. In Proc. of the 13th ACM Symp. on Operating Systems
Principles (SOSP’91), pages 152–164, October 1991.

[18] John B. Carter, John K. Bennett, and Willy Zwaenepoel. Implementation
and Performance of Munin. In Proceedings of the 13th ACM Symposium on
Operating System Principles (SOSP), pages 152–164, October 1991.

[19] David Chaiken, John Kubiatowicz, and Anant Agarwal. LimitLESS Directo-
ries: A Scalable Cache Coherence Scheme. In Proceedings of the Fourth In-
ternational Conference on Architectural Support for Programming Languages
and Operating Systems (ASPLOS IV), pages 224–234, April 1991.

[20] Rohit Chandra, Kourosh Gharachorloo, Vijayaraghavan Soundararajan, and
Anoop Gupta. Performance Evaluation of Hybrid Hardware and Software
Distributed Shared Memory Protocols. Technical Report CSL-TR-93-597,
Department of Computer Science, Stanford University, December 1993.

[21] Satish Chandra, James R. Larus, and Anne Rogers. Where is Time Spent
in Message-Passing and Shared-Memory Programs? In Proceedings of the
Sixth International Conference on Architectural Support for Programming
Languages and Operating Systems (ASPLOS VI), pages 61–75, October 1994.

[22] Satish Chandra, Brad Richards, and James R. Larus. Teapot: Language
Support for Writing Memory Coherence Protocols. In Proceedings of the
SIGPLAN ’96 Conference on Programming Language Design and Implemen-
tation (PLDI), May 1996.

[23] Jong-Deok Choi, Barton P. Miller, and Robert Netzer. Techniques for De-
bugging Parallel Programs with Flowback Analysis. Technical Report 786,
University of Wisconsin, Madison, Computer Sciences Department, August
1988.

[24] David L. Dill, Andreas J. Drexler, Alan J. Hu, and C. Han Yang. Pro-
tocol Verification as a Hardware Design Aid. In 1992 IEEE International
Conference on Computer Design: VLSI in Computers and Processors, pages
522–525, 1992.

117

[25] Anne Dinning and Edith Schonberg. An Empirical Comparison of Monitoring
Algorithms for Access Anomaly Detection. In Second ACM SIGPLAN Sym-
posium on Principles & Practice of Parallel Programming (PPOPP), pages
1–10, February 1990.

[26] Sandhya Dwarkadas, Pete Keleher, Alan L. Cox, and Willy Z waenepoel.
Evaluation of Release Consistent Software Distributed Shared Memory on
Emerging Network Technology. In Proc. of the 20th Annual Int’l Symp. on
Computer Architecture (ISCA’93), pages 144–155, May 1993.

[27] Perry A. Emrath and David A. Padua. Automatic Detection of Nondeter-
minacy in Parallel Programs. Proceedings of the ACM SIGPLAN/SIGOPS
Workshop on Parallel and Distributed Debugging, published in ACM SIG-
PLAN Notices, 24(1):89–99, January 1989.

[28] Babak Falsafi, Alvin Lebeck, Steven Reinhardt, Ioannis Schoinas, Mark D.
Hill, James Larus, Anne Rogers, and David Wood. Application-Specific Pro-
tocols for User-Level Shared Memory. In Proceedings of Supercomputing ’94,
pages 380–389, November 1994.

[29] Michael J. Feeley and Henry M. Levy. Distributed Shared Memory with
Versioned Objects. In OOPSLA ’92: Seventh Annual Conference on Object-
Oriented Programming Systems, Languages and Applications, pages 247–262,
October 1992.

[30] Kourosh Gharachorloo, Daniel Lenoski, James Laudon, Philip Gibbons,
Anoop Gupta, and John Hennessy. Memory Consistency and Event Or-
dering in Scalable Shared-Memory. In Proc. of the 17th Annual Int’l Symp.
on Computer Architecture (ISCA’90), pages 15–26, June 1990.

[31] High Performance Fortran Forum. High Performance Fortran Language Spec-
ification. Version 1.0, May 1993.

[32] Mark D. Hill, James R. Larus, Steven K. Reinhardt, and David A. Wood.
Cooperative Shared Memory: Software and Hardware for Scalable Multipro-
cessors. ACM Transactions on Computer Systems, 11(4):300–318, November
1993. Earlier version appeared in Fifth International Conference on Architec-
tural Support for Programming Languages and Operating Systems (ASPLOS
V).

118

[33] Robert Hood, Ken Kennedy, and John Mellor-Crummey. Parallel Program
Debugging with On-the-fly Anomaly Detection. Technical Report TR90-111,
Rice University, Department of Computer Science, May 1990.

[34] P. Keleher, S. Dwarkadas, A. L. Cox, and W. Zwaenepoel. Treadmarks: Dis-
tributed Shared Memory on Standard Workstations and Operating Systems.
In Proc. of the Winter 1994 USENIX Conference, pages 115–131, January
1994.

[35] Pete Keleher, Sandhya Dwarkadas, Alan Cox, and Willy Zwaenepoel. Tread-
Marks: Distributed Shared Memory on Standard Workstations and Oper-
ating Systems. Technical Report 93-214, Department of Computer Science,
Rice University, November 1993.

[36] Jeffrey Kuskin et al. The Stanford FLASH Multiprocessor. In Proc. of the
21th Annual Int’l Symp. on Computer Architecture (ISCA’94), pages 302–
313, April 1994.

[37] L. Lamport. Time, clocks, and the ordering of events in a distributed system.
Communications of the ACM, 21(7), July 1978.

[38] J. R. Larus, B. Richards, and G. Viswanathan. LCM: Memory System Sup-
port for Parallel Language Implementation. In Proc. of the Sixth Int’l Conf.
on Architectural Support for Programming Languages and Operating Systems
(ASPLOS-VI), October 1994.

[39] James R. Larus. C**: a Large-Grain, Object-Oriented, Data-Parallel Pro-
gramming Language. In Utpal Banerjee, David Gelernter, Alexandru Nicolau,
and David Padua, editors, Languages And Compilers for Parallel Computing
(5th International Workshop), pages 326–341. Springer-Verlag, August 1993.

[40] James R. Larus, Brad Richards, and Guhan Viswanathan. LCM: Memory
System Support for Parallel Language Implementation. In Proceedings of
the Sixth International Conference on Architectural Support for Programming
Languages and Operating Systems (ASPLOS VI), pages 208–218, October
1994.

[41] James R. Larus, Brad Richards, and Guhan Viswanathan. Parallel Pro-
gramming in C**: A Large-Grain Data-Parallel Programming Language. In
Gregory V. Wilson and Paul Lu, editors, Parallel Programming Using C++,
chapter 8, pages 297–342. MITP, 1996.

119

[42] Daniel Lenoski, James Laudon, Kourosh Gharachorloo, Anoop Gupta, and
John Hennessy. The Directory-Based Cache Coherence Protocol for the
DASH Multiprocessor. In Proc. of the 17th Annual Int’l Symp. on Com-
puter Architecture (ISCA’90), pages 148–159, June 1990.

[43] Daniel Lenoski, James Laudon, Kourosh Gharachorloo, Wolf-Dietrich We-
ber, Anoop Gupta, John Hennessy, Mark Horowitz, and Monica Lam. The
Stanford DASH Multiprocessor. IEEE Computer, 25(3):63–79, March 1992.

[44] Kai Li and Paul Hudak. Memory Coherence in Shared Virtual Memory
Systems. ACM Transactions on Computer Systems, 7(4):321–359, November
1989.

[45] Tom Lovett and Russell Clapp. STiNG: A CC-NUMA Computer System for
the Commercial Marketplace. In Proceedings of the 23rd Annual International
Symposium on Computer Architecture, pages 308–317, May 1996.

[46] John M. Mellor-Crummey. On-the-fly Detection of Data Races for Programs
with Nested Fork-Join Parallelism. In Proceedings of Supercomputing ’91,
pages 24–33, November 1991.

[47] Sang Lyul Min and Jong-Deok Choi. An Efficient Cache-based Access
Anomaly Detection Scheme. In Proceedings of the Fourth International Con-
ference on Architectural Support for Programming Languages and Operating
Systems, pages 235–244, Santa Clara, California, April 1994.

[48] Robert H. B. Netzer. Race Condition Detection for Debugging Shared-
Memory Parallel Programs. PhD thesis, Computer Sciences Department,
University of Wisconsin–Madison, August 1991.

[49] Robert H. B. Netzer and Barton P. Miller. Detecting Data Races in Parallel
Program Executions. Technical Report TR90-894, University of Wisconsin,
Madison, Department of Computer Science, August 1990.

[50] Robert H. B. Netzer and Barton P. Miller. Improving the Accuracy of Data
Race Detection. Proceedings of the ACM SIGPLAN Symposium on Principles
and Practice of Parallel Programming PPOPP, published in ACM SIGPLAN
NOTICES, 26(7):133–144, July 1991.

[51] Robert H. B. Netzer and Barton P. Miller. What are Race Conditions?
Some Issues and Formalizations. ACM Letters on Programming Languages
and Systems, 1:74–88, March 1992.

120

[52] *I. Nudler and L. Rudolph. Tools for the Efficient Development of Efficient
Parallel Programs. In Proceedings of the First Israeli Conference on Computer
Systems Engineering, May 1986.

[53] Dejan Perković and Pete Keleher. Data Race Detection in Release-Consistent
DSM. In Operating System Design and Implementation, 1996. To appear.

[54] Steven K. Reinhardt. Tempest Interface Specification (Revision 1.2.1). Tech-
nical Report 1267, Computer Sciences Department, University of Wisconsin–
Madison, February 1995.

[55] Steven K. Reinhardt, James R. Larus, and David A. Wood. Tempest and
Typhoon: User-Level Shared Memory. In Proc. of the 21th Annual Int’l
Symp. on Computer Architecture (ISCA’94), pages 325–337, April 1994.

[56] Steven K. Reinhardt, Robert W. Pfile, and David A. Wood. Decoupled
Hardware Support for Distributed Shared Memory. In Proc. of the 23th
Annual Int’l Symp. on Computer Architecture (ISCA’96), May 1996.

[57] Joel H. Saltz, Ravi Mirchandaney, and Kay Crowley. Run-Time Paralleliza-
tion and Scheduling of Loops. IEEE Transactions on Computers, 40(5):603–
612, May 1991.

[58] Ioannis Schoinas, Babak Falsafi, Alvin R. Lebeck, Steven K. Reinhardt,
James R. Larus, and David A. Wood. Fine-grain Access Control for Dis-
tributed Shared Memory. In Proceedings of the Sixth International Conference
on Architectural Support for Programming Languages and Operating Systems
(ASPLOS VI), pages 297–307, October 1994.

[59] Edith Schonberg. On-the-Fly Detection of Access Anomalies. Proceedings of
the SIGPLAN ’89 Conference on Programming Language Design and Imple-
mentation, published in ACM SIGPLAN Notices, 24(7):285–297, July 1989.

[60] Jaswinder Pal Singh, Wolf-Dietrich Weber, and Anoop Gupta. SPLASH:
Stanford Parallel Applications for Shared Memory. Computer Architecture
News, 20(1):5–44, March 1992.

[61] Guy L. Steele Jr. Making Asynchronous Parallelism Safe for the World. In
Conference Record of the Seventeenth Annual ACM Symposium on Principles
of Programming Languages, pages 218–231, January 1990.

121

[62] Richard N. Taylor and Leon J. Osterweil. Anomaly Detection in Concurrent
Software by Static Data Flow Analysis. IEEE Transactions on Software
Engineering, SE-6(3):265–278, May 1980.

[63] Charles P. Thacker and Lawrence C. Stewart. Firefly: a Multiprocessor Work-
station. In Proceedings of the Second International Conference on Architec-
tural Support for Programming Languages and Operating Systems (ASPLOS
II), pages 164–172, October 1987.

[64] David A. Wood, Satish Chandra, Babak Falsafi, Mark D. Hill, James R.
Larus, Alvin R. Lebeck, James C. Lewis, Shubhendu S. Mukherjee, Subbarao
Palacharla, and Steven K. Reinhardt. Mechanisms for Cooperative Shared
Memory. In Proc. of the 20th Annual Int’l Symp. on Computer Architecture
(ISCA’93), pages 156–168, May 1993. Also appeared in CMG Transactions,
Spring 1994.

[65] David A. Wood, Garth G. Gibson, and Randy H. Katz. Verifying a Multi-
processor Cache Controller Using Random Case Generation. IEEE Design
and Test of Computers, 7(4):13–25, August 1990.

122

Appendix A

The LCM Protocol

This appendix contains the finite-state machine (FSM) descriptions of the LCM

protocols. Protocol actions are different on the home and remote processors for a

given memory block, and diagrams are presented for each. These diagrams have

been automatically generated from the 2,000-line Teapot protocol specification

describing the SCC, MCC, SCC-Update, and MCC-Update versions.

123

CacheInv

CacheInv_To_RO

Read
Fault

Mark
Mod

CacheInv_To_RW

Write
Fault

CacheRO

PutNoData
Req

PutLCM
Req

CacheLCM

Mark
Mod

CacheRO_To_RW

WrRO
Fault

CacheRW

PutData
Req

Mark
Mod

Flush

GetRO
Resp

MarkMod
cont

GetRW
Resp

Upgrade
ACK

GetRW
Resp

Figure A.1: LCM-SCC remote-side FSM

124

H
om

eI
dl

e

H
om

eR
S

G
et

R
O

R
eq

H
om

eE
xc

l

G
et

R
W

R
eq

H
om

eL
C

M

M
ar

k
M

od

P
ut

N
oD

at
a

R
es

p
P

ut
LC

M
R

es
p

P
ut

A
cc

um
M

ar
k

M
od

H
om

eR
S

_T
o_

Id
le

G
et

R
W

R
eq

U
pg

ra
de

R
eq

W
rit

e
F

au
lt

W
rR

O
F

au
lt

H
om

eR
S

_T
o_

R
S

_S
an

s

G
et

R
O

R
eq

H
om

eA
w

ai
t_

P
ut

N
oD

at
a

P
ut

N
oL

C
M

R
es

p
P

ut
D

at
a

R
es

p

S
ha

re
D

at
a

H
om

eE
xc

l_
T

o_
Id

le

R
ea

d
F

au
lt

W
rit

e
F

au
lt

G
et

R
O

R
eq

G
et

R
W

R
eq

W
rR

O
F

au
lt

M
ar

k
M

od

H
om

eE
xc

l_
T

o_
S

h

G
et

R
O

R
eq

H
om

eA
w

ai
t_

S
ha

re

P
ut

A
cc

um

H
om

eA
w

ai
t_

P
ut

A
cc

um

G
et

R
O

R
eq

R
ec

on
ci

le

G
et

R
O

R
eq

H
om

eL
C

M
_T

o_
Id

le

R
ec

on
ci

le

P
ut

N
oD

at
a

R
es

p
P

ut
LC

M
R

es
p

U
pg

ra
de

R
eq

G
et

R
W

R
eq

_c
on

t
U

pg
ra

de
R

eq
_c

on
t

P
ut

D
at

a
R

es
p

G
et

R
O

R
eq

_c
on

t

G
et

R
W

R
eq

_c
on

t M
ar

kM
od

co
nt

S
ha

re
D

at
a

P
ut

A
cc

um

P
ut

LC
M

R
es

p
P

ut
N

oD
at

a
R

es
p

G
et

R
O

R
eq

_c
on

t
P

ut
A

cc
um

G
et

R
O

R
eq

_c
on

t

P
ut

D
at

a
R

es
p

S
ha

re
D

at
a

P
ut

LC
M

R
es

p

P
ut

N
oL

C
M

R
es

p

P
ut

A
cc

um
co

nt
P

ut
A

cc
um

co
nt

P
ut

A
cc

um

P
ut

N
oL

C
M

R
es

p_
co

nt
P

ut
N

oL
C

M
R

es
p_

co
nt

P
ut

N
oL

C
M

R
es

p_
co

nt

P
ut

N
oL

C
M

R
es

p_
co

nt

Figure A.2: LCM-SCC home-side FSM

125

CacheInv

CacheInv_To_RO

Read
Fault

Mark
Mod

CacheInv_To_RW

Write
Fault

CacheRO

PutNoData
Req

PutLCM
Req

CacheLCM

Mark
Mod

CacheRO_To_RW

WrRO
Fault

CacheRW

PutData
Req

Mark
Mod

Flush

GetRO
Resp

MarkMod
cont

GetRW
Resp

Upgrade
ACK

GetRW
Resp

Figure A.3: LCM-MCC remote-side FSM

126

H
om

eI
dl

e

H
om

eR
S

G
et

R
O

R
eq

H
om

eE
xc

l

G
et

R
W

R
eq

H
om

eL
C

M

M
ar

k
M

od

P
ut

N
oD

at
a

R
es

p
P

ut
LC

M
R

es
p

P
ut

A
cc

um
M

ar
k

M
od

H
om

eR
S

_T
o_

Id
le

G
et

R
W

R
eq

U
pg

ra
de

R
eq

W
rit

e
F

au
lt

W
rR

O
F

au
lt

H
om

eR
S

_T
o_

R
S

_S
an

s

G
et

R
O

R
eq

H
om

eA
w

ai
t_

P
ut

N
oD

at
a

P
ut

N
oL

C
M

R
es

p
P

ut
D

at
a

R
es

p

S
ha

re
D

at
a

H
om

eE
xc

l_
T

o_
Id

le

R
ea

d
F

au
lt

W
rit

e
F

au
lt

G
et

R
O

R
eq

G
et

R
W

R
eq

W
rR

O
F

au
lt

M
ar

k
M

od

H
om

eE
xc

l_
T

o_
S

h

G
et

R
O

R
eq

H
om

eA
w

ai
t_

S
ha

re

P
ut

A
cc

um

H
om

eA
w

ai
t_

P
ut

A
cc

um

G
et

R
O

R
eq

R
ec

on
ci

le

G
et

R
O

R
eq

H
om

eL
C

M
_T

o_
Id

le

R
ec

on
ci

le

P
ut

N
oD

at
a

R
es

p
P

ut
LC

M
R

es
p

U
pg

ra
de

R
eq

G
et

R
W

R
eq

_c
on

t
U

pg
ra

de
R

eq
_c

on
t

P
ut

D
at

a
R

es
p

G
et

R
O

R
eq

_c
on

t

G
et

R
W

R
eq

_c
on

t M
ar

kM
od

co
nt

S
ha

re
D

at
a

P
ut

A
cc

um

P
ut

LC
M

R
es

p
P

ut
N

oD
at

a
R

es
p

G
et

R
O

R
eq

_c
on

t
P

ut
A

cc
um

G
et

R
O

R
eq

_c
on

t

P
ut

D
at

a
R

es
p

S
ha

re
D

at
a

P
ut

LC
M

R
es

p

P
ut

N
oL

C
M

R
es

p

P
ut

A
cc

um
co

nt
P

ut
A

cc
um

co
nt

P
ut

A
cc

um

P
ut

N
oL

C
M

R
es

p_
co

nt
P

ut
N

oL
C

M
R

es
p_

co
nt

P
ut

N
oL

C
M

R
es

p_
co

nt

P
ut

N
oL

C
M

R
es

p_
co

nt

Figure A.4: LCM-MCC home-side FSM

127

CacheInv

CacheRO

Update
RWCacheInv_To_RO

Read
Fault

Mark
Mod

CacheInv_To_RW

Write
Fault

PutNoData
Req

PutLCM
Req

CacheLCM

Mark
Mod

CacheRO_To_RW

WrRO
Fault

CacheRW

PutData
Req

Mark
Mod

Flush

GetRO
Resp

MarkMod
cont

GetRW
Resp

Upgrade
Ack

GetRW
Resp

Figure A.5: LCM-SCC-Update remote-side FSM

128

H
om

eI
dl

e

H
om

eE
xc

l

G
et

R
W

R
eq

H
om

eR
S

G
et

R
O

R
eq

H
om

eL
C

M

M
ar

k
M

od

P
ut

D
at

a
R

es
p

S
ha

re
D

at
a

H
om

eE
xc

l_
T

o_
Id

le

R
ea

d
F

au
lt

W
rit

e
F

au
lt

G
et

R
O

R
eq

G
et

R
W

R
eq

W
rR

O
F

au
lt

M
ar

k
M

od

H
om

eE
xc

l_
T

o_
S

hG
et

R
O

R
eq

H
om

eA
w

ai
t_

S
ha

re

P
ut

A
cc

um

H
om

eA
w

ai
t_

P
ut

A
cc

um

G
et

R
O

R
eq

P
ut

N
oD

at
a

R
es

p
P

ut
LC

M
R

es
p

P
ut

A
cc

um
M

ar
k

M
od

H
om

eR
S

_T
o_

Id
le

G
et

R
W

R
eq

U
pg

ra
de

R
eq

W
rit

e
F

au
lt

W
rR

O
F

au
lt

H
om

eR
S

_T
o_

R
S

_S
an

s

G
et

R
O

R
eq

H
om

eA
w

ai
t_

P
ut

N
oD

at
a

P
ut

N
oL

C
M

R
es

p

R
ec

on
ci

le

R
ec

on
ci

le
R

ec
on

ci
le

R
ec

on
ci

le

G
et

R
O

R
eq

H
om

eL
C

M
_T

o_
Id

le

R
ec

on
ci

le

P
ut

N
oD

at
a

R
es

p
P

ut
LC

M
R

es
p

U
pg

ra
de

R
eq

G
et

R
W

R
eq

_c
on

t
U

pg
ra

de
R

eq
_c

on
t

P
ut

D
at

a
R

es
p G

et
R

W
R

eq
_c

on
t

G
et

R
O

R
eq

_c
on

t

M
ar

kM
od

co
nt

S
ha

re
D

at
a

P
ut

A
cc

um P
ut

LC
M

R
es

p
P

ut
N

oD
at

a
R

es
p

G
et

R
O

R
eq

_c
on

t
P

ut
A

cc
um

G
et

R
O

R
eq

_c
on

t

P
ut

D
at

a
R

es
p

S
ha

re
D

at
a

P
ut

LC
M

R
es

p

P
ut

N
oL

C
M

R
es

p

P
ut

A
cc

um
co

nt
P

ut
A

cc
um

co
nt

P
ut

A
cc

um
P

ut
N

oL
C

M
R

es
p_

co
nt

P
ut

N
oL

C
M

R
es

p_
co

nt

P
ut

N
oL

C
M

R
es

p_
co

nt

P
ut

N
oL

C
M

R
es

p_
co

nt

Figure A.6: LCM-SCC-Update home-side FSM

129

CacheInv

CacheRO

Update
RW CacheInv_To_RO

Read
Fault

Mark
Mod

CacheInv_To_RW

Write
Fault

PutNoData
Req

PutLCM
Req

CacheLCM

Mark
Mod

CacheRO_To_RW

WrRO
Fault

CacheRW

PutData
Req

Mark
Mod

Flush

GetRO
Resp

MarkMod
cont

GetRW
Resp

Upgrade
Ack

GetRW
Resp

Figure A.7: LCM-MCC-Update remote-side FSM

130

H
om

eI
dl

e

H
om

eE
xc

l

G
et

R
W

R
eq

H
om

eR
S

G
et

R
O

R
eq

H
om

eL
C

M

M
ar

k
M

od

P
ut

D
at

a
R

es
p

S
ha

re
D

at
a

H
om

eE
xc

l_
T

o_
Id

le

R
ea

d
F

au
lt

W
rit

e
F

au
lt

G
et

R
O

R
eq

G
et

R
W

R
eq

W
rR

O
F

au
lt

M
ar

k
M

od

H
om

eE
xc

l_
T

o_
S

hG
et

R
O

R
eq

H
om

eA
w

ai
t_

S
ha

re

P
ut

A
cc

um

H
om

eA
w

ai
t_

P
ut

A
cc

um

G
et

R
O

R
eq

P
ut

N
oD

at
a

R
es

p
P

ut
LC

M
R

es
p

P
ut

A
cc

um
M

ar
k

M
od

H
om

eR
S

_T
o_

Id
le

G
et

R
W

R
eq

U
pg

ra
de

R
eq

W
rit

e
F

au
lt

W
rR

O
F

au
lt

H
om

eR
S

_T
o_

R
S

_S
an

s

G
et

R
O

R
eq

H
om

eA
w

ai
t_

P
ut

N
oD

at
a

P
ut

N
oL

C
M

R
es

p

R
ec

on
ci

le

R
ec

on
ci

le
R

ec
on

ci
le

R
ec

on
ci

le

G
et

R
O

R
eq

H
om

eL
C

M
_T

o_
Id

le

R
ec

on
ci

le

P
ut

N
oD

at
a

R
es

p
P

ut
LC

M
R

es
p

U
pg

ra
de

R
eq

G
et

R
W

R
eq

_c
on

t
U

pg
ra

de
R

eq
_c

on
t

P
ut

D
at

a
R

es
p G

et
R

W
R

eq
_c

on
t

G
et

R
O

R
eq

_c
on

t

M
ar

kM
od

co
nt

S
ha

re
D

at
a

P
ut

A
cc

um P
ut

LC
M

R
es

p
P

ut
N

oD
at

a
R

es
p

G
et

R
O

R
eq

_c
on

t
P

ut
A

cc
um

G
et

R
O

R
eq

_c
on

t

P
ut

D
at

a
R

es
p

S
ha

re
D

at
a

P
ut

LC
M

R
es

p

P
ut

N
oL

C
M

R
es

p

P
ut

A
cc

um
co

nt
P

ut
A

cc
um

co
nt

P
ut

A
cc

um
P

ut
N

oL
C

M
R

es
p_

co
nt

P
ut

N
oL

C
M

R
es

p_
co

nt

P
ut

N
oL

C
M

R
es

p_
co

nt

P
ut

N
oL

C
M

R
es

p_
co

nt

Figure A.8: LCM-MCC-Update home-side FSM

131

Appendix B

The Race Detection Protocols

This appendix contains the finite-state machine descriptions for the race-detection

protocols. The actual handler code differs between the Race-Bit and Race-Byte

protocols, but the states and transitions are identical. Thus, a single set of FSM

diagrams are presented for the home and remote side. Each of the Teapot protocol

specifications for the race-detection protocols are roughly 1,600 lines long.

132

Cache_inv_INV

Cache_Inv_To_RO

Read
Fault

Cache_Inv_To_RW

Write
Fault Cache_inv_RO

Put_No_Data
Request

Cache_ro_RO

Read
Fault

Cache_RO_To_RW

Write
Fault

Put_No_Data
Request

Reset

WR_RO
Fault

Cache_inv_RW

Put_Data
Request

Cache_ro_RW

Read
Fault

Cache_rw_RW

Read
Fault

Write
Fault

Put_Data
Request

Reset

WR_RO
Fault

Put_Data
Request

Reset

Get_RO
Response

RD_Fault_cont

Get_RW
Response

WR_Fault
cont

WR_Fault
cont

WR_Fault
cont

Upgrade
Ack

Get_RW
Response

WR_RO_Fault
cont

Figure B.1: Race-detection protocol remote-side FSM

133

H
om

eI
nv

_N
on

e

H
om

eI
nv

_E
xc

l

W
rit

e
F

au
lt

H
om

eI
nv

_R
O

R
ea

d
F

au
lt

H
om

eR
o_

R
O

R
ea

d
F

au
lt

H
om

eR
w

_E
xc

l

W
rit

e
F

au
lt

H
om

eI
nv

_R
em

E
xc

l

G
et

R
W

R
eq

H
om

eI
nv

_R
em

R
S

G
et

R
O

R
eq

R
es

et

W
rR

O
F

au
lt

G
et

R
W

R
eq

H
om

eR
o_

R
S

G
et

R
O

R
eq

R
es

et

G
et

R
W

R
eq

G
et

R
O

R
eq

P
ut

D
at

a
R

es
p

H
om

eR
em

_E
xc

l_
T

o_
N

on
e

R
ea

d
F

au
lt

W
rit

e
F

au
lt

W
rR

O
F

au
lt

G
et

R
O

R
eq

G
et

R
W

R
eq

H
om

eI
nv

_R
S

P
ut

N
oD

at
a

R
es

p

R
ea

d
F

au
lt

R
es

et

H
om

eR
S

_T
o_

N
on

e

W
rit

e
F

au
lt

H
om

eR
em

_R
S

_T
o_

N
on

eG
et

R
W

R
eq

U
pg

ra
de

R
eq

H
om

eR
S

_T
o_

R
S

_S
an

s

G
et

R
O

R
eq

P
ut

N
oD

at
a

R
es

p

R
es

et

W
rR

O
F

au
lt

G
et

R
W

R
eq

U
pg

ra
de

R
eq

G
et

R
O

R
eq

P
ut

N
oD

at
a

R
es

p

R
ea

d
F

au
lt

R
ea

d
F

au
lt

W
rit

e
F

au
lt

G
et

R
W

R
eq

U
pg

ra
de

R
eq

H
om

eR
em

_R
S

_T
o_

R
S

_S
an

s

G
et

R
O

R
eq

P
ut

D
at

a
R

es
p

W
rF

au
lt

co
nt

W
rR

O
F

au
lt

co
nt

R
dF

au
lt

co
nt

R
dF

au
lt

co
nt

W
rF

au
lt

co
nt

W
rR

O
F

au
lt

co
nt

G
et

R
W

R
eq

co
nt

G
et

R
O

R
eq

co
nt

P
ut

N
oD

at
a

R
es

p
U

pg
ra

de
R

eq

W
rF

au
lt

co
nt

W
rR

O
F

au
lt

co
nt

W
rF

au
lt

co
nt

W
rR

O
F

au
lt

co
nt

P
ut

N
oD

at
a

R
es

p
U

pg
ra

de
R

eq

W
rF

au
lt

co
nt

W
rF

au
lt

co
nt

G
et

R
W

R
eq

co
nt

U
pg

ra
de

R
eq

co
nt

G
et

R
W

R
eq

co
nt

U
pg

ra
de

R
eq

co
nt

G
et

R
W

R
eq

co
nt

U
pg

ra
de

R
eq

co
nt

U
pg

ra
de

R
eq

G
et

R
O

R
eq

co
nt

G
et

R
O

R
eq

co
nt

G
et

R
O

R
eq

co
nt

G
et

R
O

R
eq

co
nt

R
es

et

G
et

R
O

R
eq

co
nt

G
et

R
O

R
eq

co
nt

R
ea

d
F

au
lt

Figure B.2: Race-detection protocol home-side FSM

