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Abstract

In logic programming, computations are described as relations between inputs and
outputs. This is a powerful paradigm, and well-suited to expressing many computa-
tions, but there are classes of problems that can be specified more naturally in the
functional programming style. Adding functional programming facilities to Prolog
results in a more powerful language, as they allow higher-order functional expres-
sions to be evaluated conveniently within the logic programming environment. And,
as will be shown in this thesis, the efficiency of functional programming in logic is
competitive with other functional evaluation techniques.

This thesis presents two methods for evaluating higher-order functional expres-
sions in logic. The first uses equational function definitions as inputs to a logic-
based term-rewriting system. The second compiles the same equations into equiv-
alent clauses that can be directly executed by Prolog. Programs are developed for
translating between λ-expressions and equations, for performing rewriting, and for
compiling equations into Prolog clauses. In addition, benchmarks are run to compare
the evaluation speed of these methods to a pair of Lisp implementations.
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Chapter 1

Introduction

In logic programming, computations are described as relations between inputs and

outputs. This technique works well for many programming tasks, but it forces simple

arithmetic expressions to be written in a rather cumbersome form. For example, to

add three numbers pure Prolog requires one to use something like the following query:

?- sum(1,2,X), sum(X,3,Y).

This is in contrast to a language such as Pascal, that allows one to specify the same

computation more directly:

Y := 1+2+3;

The former approach requires more typing, uses an extra variable, and tends to

obscure the fact that three numbers are being added.

Early implementors of Prolog recognized these difficulties and allowed simple ex-

pressions to be written in a more succinct form:

?- Y is 1+2+3.

1
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Thus it is easy to evaluate simple arithmetic expressions in Prolog. However, it is

still not possible to compute function-valued expressions, or expressions that accept

functions as arguments, e.g. the composition of a pair of functions, or the result

of applying a function to each element in a list. We see this lack of higher-order

functional programming capabilities as a shortcoming, and feel that a mechanism for

evaluating such expressions should be added to Prolog.

1.1 Why functional programming in logic?

The functional programming paradigm has proven to be a natural way of expressing

many classes of problems, and modern implementations have made much progress

towards efficient functional programming systems. Why, then, the interest in adding

functional programming capabilities to Prolog when specialized systems already exist?

There are three motivations:

convenience: Functional expressions could be evaluated without having to leave the

Prolog environment.

research: Implementing functional programming in logic is a step towards a more

important goal: the amalgamation of the functional and relational programming

styles. This has been an active area of research in the past decade. A number

of approaches have been proposed [CY86, GM84, AKN86, Nar88], but efficient

implementations have not appeared. If it were possible to evaluate higher-

order functional expressions efficiently within Prolog it would make Prolog more

attractive as a language in which to implement the amalgamation.

efficiency: The execution speeds of Prolog implementations have rapidly increased

in recent years. Any system written in Prolog will continue to take advantage
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of advances in Prolog implementation technology. It may be that functional

programming in logic is, or will become, competitive with other functional eval-

uation techniques.

1.2 Our solutions

It would certainly be possible to create a Prolog implementation that contained a

complete functional programming subsystem in addition to a standard Prolog engine.

Whenever a functional expression needed to be reduced, it would be passed to the

subsystem for evaluation. While this approach would be relatively straightforward,

it suffers from three major disadvantages:

1. It ignores the differences between logic and lambda variables.

2. The size of such a system would be prohibitive. It is not unusual for a Common

Lisp package alone to take up many megabytes of both disk space and RAM.

3. It would require us to re-implementProlog, a task that seems counter-productive

given the efficient Prolog implementations at our disposal.

If it were possible to have the Prolog derivation mechanism mimic functional pro-

gramming, these shortcomings could be avoided since a Prolog implementation alone

would be sufficient to perform both logic and functional programming. In addition,

the system would be easily portable to future Prolog implementations. Thus our

research has focused on a pair of software-based solutions:
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Rewriting

Functional programming can be implemented by term rewriting systems if function

definitions are expressed as rewrite rules. This is the basis of our first approach. A

translation from λ-calculus style function definitions to equivalent sets of equations is

shown. The equations are then used as rewrite rules by a logic program that performs

“rewriting by resolution”.

Compiling

Our second approach borrows the λ-to-equations translation, but uses the sets of

equations in a different manner. A technique is described for compiling the equations

into directly-executable Prolog code that is a logical consequence of the equations

and basic mathematical axioms describing equality. The execution speed achieved by

the compiled code rivals that of Lisp implementations.

1.3 Thesis overview

This thesis contains a discussion of previous and related work (Chapter 3), an exam-

ination of the translation from λ-expressions to equations (Chapter 4), a description

of the rewriting approach in full detail (Chapter 5), and a complete treatment of the

compilational approach (Chapter 6). Our conclusions and future directions for re-

search are listed in Chapter 7. But first it is necessary to introduce some background

material that the reader may find useful in understanding the rest of this thesis.



Chapter 2

Preliminaries

2.1 The λ-calculus

A complete introduction of functional programming is outside the scope of this thesis.

Thus, it will be assumed that the reader has at least a rudimentary knowledge of the

paradigm. However, most functional programming implementations are based to

some degree on the λ-calculus. This section will provide an overview of λ-calculus

and establish the terminology that will be used throughout the thesis.

2.1.1 Introduction

At its most basic, the λ-calculus is a formal system for defining functions and de-

scribing how they behave. It provides λ-notation as a syntactic convention for writ-

ing functions and function applications. Assuming an infinite sequence of variables

(e.g. x, y, f), individual constants (e.g. 1, 2, 3), and function constants1 (e.g. +, −,

1The word “constants” will be used to mean both individual and function constants throughout

this thesis.

5
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∗), an expression in λ-notation, called a λ-term, is defined inductively as one of the

following:

an atom: All variables and constants are λ-terms.

an application: If M and N are λ-terms, then (M N) is a λ-term.

an abstraction: If M is a λ-term and x is a variable, then λx. M is a λ-term.

The λ-notation is motivated by the need to indicate which variables in an expres-

sion are meant as formal parameters. For example, the expression x + y can be a

function of x, y, or both. Writing functions as λ-abstractions allows one to disam-

biguate such expressions by stating which variables will be supplied when a function

is to be applied. Informally, a term of the form λx. B represents a function of x,

whose value for an argument N can be determined by substituting N for x in B. But

unless care is taken in formalizing the notion of substitution, function application can

produce incorrect results. (This will be illustrated in Section 2.1.3.)

2.1.2 λ-variables

Before discussing substitution, it is necessary to distinguish between “free” and

“bound” variables in λ-terms. The set of free variables in an expression M , writ-

ten as FV (M), can be defined inductively as follows:

1. FV (a) = {} if a is a constant.

2. FV (x) = {x} if x is a variable.

3. FV (λx. M) = FV (M) − {x}.
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4. FV ((M N)) = FV (M) ∪ FV (N).

The scope of the abstraction operator λx in the term λx. B is B. An occurrence of

a variable x is bound in a term M if it occurs in a subterm of M of the form λx. N ,

otherwise it is free. A closed term is one without any free variables.

2.1.3 Substitution

The result of substituting N for every free occurrence of x in M is written as [N/x]M ,

and can be defined as follows:

1. [N/x]x = N ,

2. [N/x]a = a if x �= a,

3. [N/x](M1 M2) = ([N/x]M1 [N/x]M2),

4. [N/x]λx. M = λx. M ,

5. [N/x]λy. M = λy. [N/x]M if x �= y and y �∈ FV (N),

6. [N/x]λy. M = λz. [N/x]([z/y]M) if x �= y, y ∈ FV (N), and z �∈ FV (M N).

The last rule for substitution is of particular importance, as it prevents substitutions

from altering the meaning of an expression2. Notice that it performs a renaming of

the bound variable y when y occurs free in N . This is to avoid capturing the free

variable in N . As an illustration, imagine substituting y + z for x throughout the

2Church’s original formulation of the λ-calculus prohibited a substitution in case 6, but it has

become common to define substitution for all cases at the expense of a more complicated definition.

([HS86] is taken as the authority on λ-calculus.)
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expression λy. 2 ∗ y + x. Performing the substitution without renaming the bound

variable would result in the expression λy. 2 ∗ y + y + z. But this is incorrect! The

variable y occurred free in y + z, and became bound when the substitution was per-

formed. To avoid this, the bound variable must be renamed such that it is distinct

from the free variables in both the body and the expression being substituted. This

renaming is referred to as α-conversion.

2.1.4 β-reduction

It was mentioned earlier that a term λx. B represents a function of x, and that it can

be evaluated at N by substituting N for x throughout B. Now that substitution has

been formalized, this operation can be more precisely described.

Any application of the form (λx. B)N is called a β-redex, or redex, and the cor-

responding term [N/x]B is called its contractum. The result of replacing a β-redex

by its contractum is called a β-reduction or β-contraction. An expression M is said

to β-reduce or reduce to M ′ if M ′ can be obtained from M by a finite series of

β-contractions. An expression containing no redexes is in normal form.

A λ-expression can be evaluated by using the β-reduction rule repeatedly until

the expression has been reduced to normal form. However, there is often more than

one redex awaiting contraction at any given time. The first Church-Rosser theorem

guarantees that an expression has at most one normal form. Thus the order in which

the redexes are chosen will not influence the result of the reduction. But there are

instances in which one reduction strategy reaches the normal form while another may

fail to do so. For example, consider the following expression:

(λx. 3)((λy. y y)(λy. y y)).
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The function λx. 3 discards its argument, so any time spent evaluating the redex to

the right will be wasted. What is worse, attempting to evaluate (λy. y y)(λy. y y) first

leads to a non-terminating sequence of reductions! (This makes an interesting exer-

cise. When λy. y y is applied to λy. y y, both occurrences of y in the body of the first

term are replaced by the operand, λy. y y, yielding the expression (λy. y y)(λy. y y).

Clearly, the β-reduction operation could be applied infinitely many times to this term

without reaching a normal form since the expressions before and after a β-contraction

are identical.)

Given a redex (λx. M )N to reduce, there are two possible courses of action. An

attempt can be made to reduce N before performing the contraction, or the reduction

can be performed before simplifying the occurrences of N in its contractum. Always

choosing to reduce the argument first is referred to as applicative order. Giving

priority to the contraction is called normal order. The second Church-Rosser theorem

states that normal order evaluation will always lead to the normal form if one exists.

2.1.5 η-conversion

Intuitively, a pair of functions f and g are equal if f(x) = g(x) for all x. But λ-

calculus, as described above, provides no notion of function-equality. The η rule is

usually included in a formalization of λ-calculus to express the equivalence of such

functions:

λx. (M x) = M if x �∈ FV (M)

For example, the λ-terms y and λx. (y x) are equivalent by this definition, and it can

be seen that the application of either of these terms to an argument z results in the

term (y z). η-conversion allows any λ-term of the form λx. (M x) to be replaced by

M as long as x does not occur free in M . The term λx. (M x) is referred to as an
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twice = λf. λx. f : (f : x)

succ = λx. x + 1

Figure 2.1: Definitions of the “twice” and “succ” functions

η-redex, and M is its contractum.

2.1.6 Our syntax

The λ-syntax used throughout this thesis differs from that of the pure λ-calculus in

several respects:

• In pure λ-calculus, function application is denoted by juxtaposition. This thesis

will often use the left-associative infix operator ‘:’ to represent applications.

• Pure λ-calculus uses only prefix notation. In this thesis the use of infix opera-

tors such as ‘+’ will be allowed, and it is assumed that the standard operator

precedences will disambiguate any expressions in which they occur.

2.2 The “twice” example

The “twice” function (defined in Figure 2.1) is of interest, as it is one of the simplest

examples of a higher-order function. It expects a function f as its first argument, and

applies f twice to its second argument, x. The function is of value for two reasons.

First, it can be used to illustrate how higher-order functions are handled by a given
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((λf. λx. f : (f : x)) � (λf. λx. f : (f : x))) : succ

(λx. (λf. λx. f : (f : x)) : ((λf. λx. f : (f : x)) : x)) � succ

(λf. λx. f : (f : x)) : ((λf. λx. f : (f : x)) � succ)

(λf. λx. f : (f : x)) � (λx. succ : (succ : x))

λx. ((λx. succ : (succ : x)) : ((λx. succ : (succ : x)) � x)

λx. (λx. succ : (succ : x)) � (succ : (succ : x))

λx. (succ : (succ : (succ : (succ : x))))

Figure 2.2: A sample reduction involving “twice”

functional programming scheme. Second, it can be used as a benchmark to assess the

ability of a functional programming system to evaluate higher-order functions.

When “twice” is applied to itself and then to another function, it has an exponen-

tial effect. That is, n applications of “twice” to a function f results in Xn applications

of f where Xn = 2Xn−1 and X1 = 2. For example, the expression

twice : twice : twice : succ : 0

reduces to 16, but four applications of twice evaluates to 216. A fifth application is im-

possible on any existing machine. Computing multiple applications of twice requires

mainly higher-order function manipulation, and takes long enough in most functional

programming implementations for reliable timings to be made. A sample reduction

of twice : twice : succ is shown in Figure 2.2. The application to be performed next

in each line is marked with a �.
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2.3 Equations as a formalism

Equations can define any computable function. Our earliest source for equations as a

computational formalism is S.C. Kleene’s 1936 paper “General recursive functions of

natural numbers” quoted in [Rog67]. Kleene was interested in characterizing general

recursive functions, and needed a language in which to express them. He devised sets

of recursion equations, so called because the value of a function for a given argument

is defined in terms of the value of the function for an argument that is in some sense

simpler, or in terms of a simpler function. On page 16, [Rog67] gives the following

example of a system of recursion equations:

f(0) = 0

g(x) = f(x) + 1

f(x + 1) = g(x) + 1

with the comment that f is the main function symbol3 and that g is an auxiliary one.

It is clear that the function f returns expressions of the form 0 + 1 + . . . + 1

where the + associates to the left. Apparently, +1 should be read as a postfix unary

constructor. This is better written in the usual successor notation, giving the following

set of equations:

f(0) = 0

g(x) = s(f(x))

f(s(x)) = s(g(x))

There are now three different types of function: constructors, auxiliaries, and the

main function. In the equations above, terms denote the values of the functions

3[Rog67] says that it can easily be verified that the equations determine the function λx. 2 ∗ x.
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being defined rather than the functions themselves. Hence this format is referred to

as value-oriented.

The format that will be favored in this thesis is the applicative style, where the

functions themselves are denoted by terms. In this style, the value of a function is

specified by the application of the function to an argument. So, the equations become:

f : 0 = 0

g : x = s(f : x)

f : s(x) = s(g : x)

Here the first argument of the application operator ‘:’ is a term denoting a function.

For example, f here refers to a function, and f : 0 represents a value. This style

provides consistency as ‘:’ is the only evaluable function.

Applicative style has a number of advantages. One is that the constructor func-

tions are easier to recognize. Another is that the application operator ‘:’ is syntac-

tically easily interchangeable with the abstraction operator λ. (The importance of

this interchangeability will become clear in Chapter 4). Finally, as shall be seen in

Chapter 6, another advantage of applicative form is that it can be transformed into

a readily executable Prolog program.

2.4 Term rewriting systems

Term rewriting systems provide a means of computing with equations of the form

X = Y . The equations are interpreted directionally, from left to right, as rewrite

rules which specify that any occurrence of the left-hand side in an expression can be

replaced by the right-hand side. The terms on either side of a rewrite rule are allowed
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to contain variables that become instantiated when the rule is applied. For example,

the expression 3 + 0 could be reduced to 3 by applying the equation x + 0 = x.

Much of the terminology from λ-calculus is used in discussing term rewriting

systems. A subexpression matching the left-hand side of any rewrite rule is called a

redex , and an expression containing no redexes is in normal form. Expressions can be

reduced by applying rewrite rules repeatedly until the normal form is reached (if one

exists). As in λ-calculus, an expression may contain more than one redex. Thus the

discussion of reduction orders in Section 2.1.4 applies here as well. In addition, for

certain sets of rewrite rules it may be the case that more than one equation could be

applied to a given redex. This allows the possibility of multiple normal forms, where

the normal form reached depends upon the choice of rewrite rules.

It can be shown that the Church-Rosser theorems hold for term rewriting using

sets of “well-behaved” equations [HO82], or equations that satisfy the following three

conditions:

1. No variable may be repeated on the left-hand side of an equation.

2. If two different left-hand sides match the same expression, then the correspond-

ing right-hand sides must be the same.

3. When two (not necessarily different) left-sides match two different parts of the

same expression, the two parts must not overlap.
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Previous work

3.1 Equational programming

In [HO82], Hoffmann and O’Donnell describe the power and utility of equations as a

computational formalism. The authors are concerned with the correctness of compu-

tations, and feel that programs should be expressed in a language that has a complete

proof system so that the results of a computation can be shown to be logical con-

sequences of the program. They are aware of Prolog, but feel that the backtracking

strategy employed in the search for answers is too costly for general use. Instead,

they propose the language of equational logic, with term rewriting as a computa-

tional mechanism. It is shown that if a set of equations satisfies the restrictions in

Section 2.4, an expression being reduced in their presence has at most one normal

form, and that it can be reached by performing normal-order evaluation.

The main emphasis in the paper is on the creation of an efficient equational

programming system. Towards this end, the authors discuss methods for “compiling”

equations into data structures that can be efficiently manipulated by an optimized

15
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term rewriting system. They suggest the following applications for an equational

programming system:

programming: Programs can be written as sets of equations.

specifying interpreters: The semantics of a language can be described by a set

of equations. When these equations are given to an equational programming

system, they result in an interpreter that adheres strictly to the semantics of

the language. The authors illustrate this by specifying the semantics of both

Lisp and a subset of Lucid equationally.

data type implementations: Equations describing data types can be used to au-

tomatically produce correct implementations.

theorem proving: When a theorem is of the form A = B, it can sometimes be

proven by reducing both A and B and arriving at identical expressions.

3.2 Compiling functional languages

3.2.1 Turner’s combinators

In theory, it is possible to transform any λ-expression into an equivalent expression

built only from applications of primitive functions and combinators (or closed λ-

expressions). In fact, only two combinators, S and K are required, though a third

combinator, I, is usually included for efficiency reasons. (See Figure 3.1.) It was rec-

ognized by D.A. Turner that the resulting expressions could be reduced by a machine

that implemented the reduction of these three combinators [Tur79]. His language
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S = λf. λg. λx. f : x : (g : x)

K = λx. λy. x

I = λx. x

Figure 3.1: S, K, and I combinator definitions

SASL compiled function definitions into combinator form and used such a reduction

machine to evaluate them.

Compiling into a set of fixed combinators has a number of advantages. The

reduction machine is simple, and can be optimized to deal with the required combi-

nators. Turner’s machine was also able to implement normal order reduction in times

comparable to applicative order. However, there are some serious drawbacks. The

translation to combinators is expensive, and the resulting expression is much larger

than the original. In the worst case, the size of the combinator expression can be

proportional to the square of the size of the initial λ-expression [Ken82](As cited in

[Jon87]).

3.2.2 Hughes’ supercombinators

Hughes recognized that the shortcomings of the combinator approach arose from

translating λ-expressions into such a small number of fixed combinators. He proposed

transforming each function definition into a new combinator, called a supercombinator

[Hug84]. A supercombinator S is a λ-expression of the form

λx1. λx2 . . . λxn. E
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where E is not a λ-abstraction and:

1. S has no free variables,

2. any λ-abstraction in E is a supercombinator,

3. n ≥ 0.

Any λ-expression can be transformed into a supercombinator through a process

known as lambda lifting [Joh85], which abstracts the free variables out of the expres-

sion. For example, consider the following program:

(λx. (λy. x + y) x) 4.

The inner λ-expression is not a supercombinator because it contains a free variable.

However, β-reduction can be used in reverse (called β-abstraction) to produce an

equivalent expression that is a supercombinator:

(λz. λy. z + y) x.

If the supercombinator λz. λy. z + y is given a name, say A, the original expression

can be rewritten as

(λx. A x x) 4,

which is also now a supercombinator. If the name B is given to λx. A x x, the

program can be written simply as B 4, where B x = A x x.

Reduction of an expression containing a supercombinator cannot take place until

all arguments are present. The arguments are then substituted for the formal param-

eters simultaneously. Thus supercombinator definitions can be regarded as a set of

rewrite rules [Jon87].
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3.3 Warren’s method

In [War82], D.H.D. Warren examines a pair of possible extensions to Prolog. It had

been argued that Prolog lacked the power of functional languages which are able to

treat functions as data objects. These languages allow function applications where

the function to be applied is determined at runtime. A similar addition to Prolog

would be to permit the predicate symbol in a procedure call to be a variable. Warren

gives the following example:

have_property([],P).

have_property([X|L],P) :- P(X), have_property(L,P).

This program would allow the user to check whether all of the elements of a list satisfy

a condition P.

Also, most functional languages provide the ability to refer to a functional expres-

sion without having to give it a name. This is one of the strengths of the λ-calculus.

An analogous extension to Prolog would be to allow the use of λ-notation in the

description of predicates, where the body of a λ-expression would be a list of Prolog

goals. So, for example, the following query becomes possible:

?- have_property( [0,1], lambda(X).square(X,X) ).

Which asks if both 0 and 1 have the property of being equal to their squares. (Notice

that X is a logic variable.)

Warren regards both of these extensions as “merely syntactic sugar”, as either

can be mapped into existing Prolog. The mapping involves transforming variable

procedure calls of the form P (t1, . . . , tn) into the call apply(P, t1, . . . , tn) and adding

clauses such as

apply(foo, X1, . . . , Xn) ← foo(X1, . . . , Xn)
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for each predicate ‘foo’ that needs to be treated as a data object. A nameless predicate

lambda(X1, . . . , Xn).E is replaced by some unique identifier φ that is then defined by

a separate ‘apply’ clause: apply(φ, X1, . . . , Xn) ← E.

As a final example, Warren shows a translation of the “twice” example. (See

Section 2.2.) He states that with the transformation rules above in conjunction with

“the standard technique for translating functional notation into predicate notation”,

the “twice” example can be evaluated by the following call:

?- apply(twice,twice,F1), apply(F1,twice,F2),

apply(F2,succ,F3), apply(F3,0,Ans),

if the function definitions are first translated into a set of apply clauses in Prolog:

apply(twice,F,twice(F)).

apply(twice(F),X,Z) :- apply(F,X,Y), apply(F,Y,Z).

apply(succ,X,Y) :- Y is X+1.

However, his paper is vague about how to perform the translation from λ-style func-

tion definitions to these Prolog clauses.

Warren argues against having Prolog support either predicate variables or the λ-

notation as primitives. He admits that he would prefer to use predicate variables in

certain situations, but is concerned that overuse of such variables leads to confusing

programs. As for λ-notation, he dislikes the effect that nesting of expressions can

have on readability. In addition, he argues that his translation produces code that,

when executed by a structure-sharing Prolog implementation, should be nearly as

efficient as the “standard” way of representing functional objects:

So, for DEC-10 Prolog at least, providing a specific implementation

of higher-order objects would not produce huge efficiency gains over the
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approach I am advocating, and for most programs the overall improvement

would probably be negligible. [War82, page 448]

3.4 Logic programming with equations

Equations can be considered as clauses of first-order logic with ‘=’ as predicate symbol.

Thus sets of equations can be viewed as logic programs. That is, given a set of

equations E, it is possible to ask whether or not an equation e follows as a logical

consequence of E, provided that the logic programming framework contains some

notion of equality. Since equations can be used to define functions, the value of a

functional expression can therefore be seen as a logical consequence of a set of function

definitions. For example, if addition over terms in successor notation is defined as

0 + X = X,

s(X) + Y = s(X + Y ),

evaluating s(0) + 0 is equivalent to finding a substitution θ = {x/t} such that

(s(0) + 0 = x)θ is true. Unfortunately, many substitutions exist that satisfy the

query. If the canonical (or completely reduced) value of s(0) + 0 is to be found,

the logic programming system must employ some sort of special strategy for dealing

with equality to find it.

Two main approaches have been used to include equality in logic programming.

One method is to extend the inference mechanism so that it includes an inference

rule for the equality relation. In other words, equality is given a special status, and

the Prolog derivation mechanism is expanded such that it incorporates a strategy for

finding canonical answers to equational queries. This was the approach taken by (G.)

Robinson and Wos [RW69], and by Goguen and Meseguer [GM84]. Another technique



CHAPTER 3. FOO 22

is to treat equality like any other relation, and add to the theory a set of axioms that

define equality. This second approach has been taken by Kowalski [Kow70], and more

recently by van Emden and Yukawa [vEY87].

In [vEY87], two approaches were proposed for performing logic programming with

equations. The standard set of axioms defining reflexivity, transitivity, and substitu-

tivity forms a logic program, but it is computationally useless as its SLD-resolution

search space contains many derivations yielding noncanonical answers and many infi-

nite branches. Thus their first approach was to replace the axioms with an equivalent

set whose SLD-derivation mimics rewriting without search. In this approach, the

equations themselves form part of the logic program. Their second method obtains

an efficient Prolog program by translating the equations to a set of Horn clauses not

involving equality. Therefore, the equality axioms play no role in this second method

and can be discarded.



Chapter 4

Translating λ-expressions to

equations

Both of the methods to be presented for performing functional programming in logic

require that function definitions be written as sets of equations. However, the λ-

calculus is often a more concise way to describe functional expressions as it does

not require that functions be given names. If λ-notation is to be supported by our

systems, it will be necessary to perform a conversion from λ-expressions to sets of

recursion equations.

Given a λ-abstraction of the form λx. B, an equation containing the function can

be constructed by giving the abstraction a name:

introduced name = λx. B.

However, this equation is actually a mixture of the two formalisms, as it contains a

λ-expression as right-hand side. What is needed is a translation that produces sets

of λ-free equations.

23
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The existence of such a translation seems plausible, as both notations can be used

to describe the same functions. In fact, it would appear that Lisp provides both

alternatives. For example, the function that squares its argument can be written as

either of the following:

(DEF SQUARE (LAMBDA (X) (* X X)))

(DEF SQUARE (X) (* X X))

The first alternative looks like a named λ-expression

square = λX. X ∗ X,

and the second looks like an equation

square : X = X ∗ X.

Both describe the same function, but one contains a λ and the other does not. At first

glance, it looks as if it is possible to convert a λ into an application by moving it to

the other side of the equation, and vice versa. In fact, it is the case that abstraction

and application are interchangeable. For example, consider the expression f = λx. B.

If both sides of the equation are applied to the variable x, the left-hand side becomes

f : x, and the right-hand side reduces to B. Thus the equation becomes f : x = B.

Conversely, the original equation can be obtained by abstracting x out of both sides

of f : x = B. This produces the equation λx. (f : x) = λx. B. The η-reduction rule

of λ-calculus (see Section 2.1.5) allows the left-hand side to be reduced simply to f ,

resulting in the equation f = λx. B

This interchangeability serves as a translation for named λ-abstractions of the

form f = λx. B, but is sufficient only if there are no further abstractions within B.

However, the process can be repeated as many times as is necessary to remove all

occurrences of λ from the original expression.



CHAPTER 4. FOO 25

4.1 Representing λ-expressions in logic

Before a translation from λ-expressions to equations can be described in more detail,

a representation in logic for λ-abstractions is required. When the λ-expression λx. B

contains no free variables, it denotes a fully specified function. In other words, the

value of the function depends only upon the value of the arguments required by the

function. From the logic programming point of view, such an object can be named

by a constant. If, on the other hand, the expression does have free variables, the

function denoted depends on the values of the free variables; i.e. the values of the

arguments alone are not enough to evaluate the function. Such a partially specified

object must be named in logic by a term with the free variables as arguments. Hence,

in the context of logic, the free variables of a λ-term are logic variables. They have a

status different from that of the bound variables, which are λ-variables.

It would be convenient to represent bound variables by logic variables as well, but

this presents a problem. As was mentioned in Section 2.1, bound variables have a

scope. Different variables are allowed to share the same name as long as they occur in

separate scopes. For example, x is used as a formal parameter twice in the following

expression, but no confusion arises because each occurrence has its own scope.

fourtimes = (λf. λx. f : (f : x)) : (λf. λx. f : (f : x))

Logic variables, on the other hand, do not include the notion of scope. Thus it would

not be possible to use logic variables to represent x in the expression above as the logic

variable X would denote the same value in each of the scopes. However, the names

chosen for λ-variables have no semantical importance, and the meaning of fourtimes

would not change if y was used instead of x throughout one of the scopes. The λ-

calculus allows one to perform such renamings as long as they are done consistently

(each occurrence within a given scope is changed), and the new name is distinct from
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all other names in the current scope. A λ-expression in which all different variables

have different names is said to be in standard form. If it is assumed that all λ-

expressions are in standard form, it becomes possible to represent bound variables by

logic variables.

So, in logic, a λ-abstraction is a term with two arguments: the bound variable

and the body. The first is a logic variable (which will not give problems for λ-terms

in standard form), and the second is a logic term representing the body. Strictly

speaking, λx. t : x must be written as λ(x, t :x) according to the rules of logic syntax,

but the traditional λ-calculus notation will be used for the purposes of discussion.

4.2 An example

As an example, let us show how to eliminate the λ’s from the definition of the “twice”

function, t = λf. λx. f : (f : x). There are no free variables in the λ-expression, so the

logic constant on the left-hand side of the equation is appropriate. The transformation

described earlier in this chapter can now be used to remove the first occurrence of

λ, giving t : F = λx. F : (F : x) where F is a logic variable. If the transformation

is applied again, the equation becomes t : F : X = F : (F : X). However, for

reasons that will become clear in later chapters, it is preferred that there be no more

than one application on the left-hand side of an equation. This can be achieved here

by replacing the right-hand side obtained by a single λ-removal, λx. F : (F : x), by

an appropriate logic term, such as g(F ). (Terms generated during the translation

process, such as g(F ), are referred to as introduced function symbols.) A second

equation is then created to define the term g(F ), resulting in the following pair of

equations:

t : F = g(F )
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g(F ) = λX. F : (F : X).

One further transformation and β-reduction on the second equation gives

t : F = g(F )

g(F ) : X = F : (F : X),

which completes the translation to λ-free equations. As this procedure removes a λ

at every stage, any λ-expression can be converted to λ-free equations by repeatedly

applying it. The transformation from λ-expressions to equations is due to M. Cheng,

and first appears in [Che87], where it is formally defined as follows. In this definition,

t is the λ-expression to be translated, and t′ is the equivalent logic representation:

1. t′ is t if t is a variable.

2. t′ is (t1
′ : t2

′) if t is (t1 : t2).

3. t′ is f(y1, . . . , ym) if t is λx. t1 and FV (t) = {y1, . . . , ym} where f is a new

function symbol. The equation f(y1, . . . , ym) : x = t1
′ is then added.

4.3 Automating the translation

In general, automating the translation should be quite easy. It involves finding the

free variables in a λ-expression, and including them as arguments to an introduced

functor. Each time a new equation is created, it is regarded as a logic clause. Unfor-

tunately, it is difficult to discuss programs for finding free variables and introducing

new clauses without knowing something about the system in which one intends to

implement the translation. For example, finding free variables requires searching
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through an expression to find variables that are not bound by some outer abstrac-

tion. Since methods for disassembling terms are usually system-dependent, a general

logic program to find free variables cannot be given. However, a program is shown in

Appendix B that can be executed by ALS-Prolog to perform the desired translation.

4.4 Automating the reverse translation

It is not enough to be able to translate λ-expressions to equations. When function-

valued expressions are evaluated, the result must be translated back into a form that is

meaningful to the user. If, for example, the user submitted an expression that reduced

to the “twice” function, it would be better to present the user with λa. λb. a : (a : b)

than t as an answer. Specifically, a program is desired that takes a function symbol

occurring on the left-hand side of an equation and returns the λ-expression corre-

sponding to the function denoted by the symbol. Formally, this operation can be

defined by the following rules. (Here t′ is the λ-expression reconstructed from the

equational expression t.)

1. t′ is t if t is a variable.

2. t′ is (t1
′ : t2

′) if t is (t1 : t2).

3. t′ is λz. t1
′ if t is f(s1, . . . , sm), f is an introduced function symbol, and an

equation f(x1, . . . , xm) : y = t2 exists. t1 is obtained from t : z by performing a

single rewriting step.

Extensionality says that t is equivalent to λX. (t : X), provided X does not occur

free in t. This is a useful equivalence because it allows the introduction of the term

t : X , which appears as the left-hand side of one of the equations. Since t : F = g(F ),
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the expression λX. (t : X) can be rewritten as λX. g(X). To summarize, extensionality

was used to write t as an abstraction with t : X as body. An equation was then used

to replace t : X by g(X), so that it can be said that t = λX. g(X). But g(X) is also

a function symbol occurring on the left-hand side of an equation. Thus the process

can be repeated on the term g(X).

The following chain traces the construction of the λ-expression represented by the

term t:

t = λX. t : X = λX. g(X) = λX. λY. g(X) : Y = λX. λY. X : (X : Y ).

The first step in writing a logic program to perform the reverse translation is to

axiomatize the knowledge that was used in moving from one step in the chain to the

next. In the chain above, extensionality allowed t to be written instead as λX. t : X .

Thus our program must contain a clause describing this relationship:

X = λY. (X : Y ) ← . (1)

The second step in the chain, from λX. t : X to λX. g(X), was made possible by the

use of an equation, which can be described by the following axiom:

λY. (X : Y ) = λY. Z ← X : Y = Z. (2)

The steps in the chain alternate between application of extensionality and the use

of an equation, and the transformation is complete when it is no longer possible to

find the current expression as the left-hand side of an equation. Thus the axiom

X = X ← an equation does not apply to reduce X. (3)

must be added to describe the termination of the transformation. The condition on

the axiom can be removed if it is guaranteed that the axiom will be used only if the

others fail.
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It is clear that axioms (1) and (2) can be combined to form

X = λY. Z ← X : Y = Z, (4)

which is a consequence of extensionality and the use of an equation. This axiom de-

scribes one extensionality/equation cycle in the chain of equalities, but is not sufficient

to describe the entire chain. This deficiency can be corrected by modifying the condi-

tion on axiom (4). When X :Y = Z is combined with an axiom describing transitivity,

X = Y ← X = Z, Z = Y , the condition can be rewritten as X : Y = Z1, Z1 = Z,

resulting in a new axiom that describes a series of extensionality/equation steps:

X = λY. Z ← X : Y = Z1, Z1 = Z. (5)

Thus a logic program for performing the reverse translation can be formed by com-

bining this axiom (5) with the one describing termination (3):

X = λY. Z ← X : Y = Z1, Z1 = Z. (6)

X = X ← . (7)

When the equations resulting from the translation of a given λ-expression are added

to these clauses, an SLD-derivation effecting the reverse translation can be obtained.

In Figure 4.1, the term t is transformed back into its λ-calculus equivalent. It is

assumed that the equations created in Section 4.2 have been added to axioms (6) and

(7) to form a logic program. The initial query, t = Z, is resolved with axiom (6) to get

the second list of goals. t : Y = Z1 is then matched with the equation t : Y = g(Y ),

yielding the third query. Next, axiom (6) is used again to get from the third goal

statement, g(Y ) = Z2, to the fourth. The goal g(Y ) : Y1 = Z3 is then resolved with

an equation. And, finally, axiom (7) is used to complete the derivation.

This derivation could be performed by Prolog if it were possible to detect when

the leftmost goal should be resolved with an equation, and when with one of the
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← t = Z

Z substituted by λY. Z2

← t : Y = Z1, Z1 = Z2

equation t : Y = g(Y ) used

← g(Y ) = Z2

Z2 substituted by λY1. Z4

← g(Y ) : Y1 = Z3, Z3 = Z4

equation g(Y ) : Y1 = Y : (Y : Y1) used

← Y : (Y : Y1) = Z4

reflexivity used

� with t = λY. λY1. Y : (Y : Y1)

Figure 4.1: SLD-derivation that effects reverse translation
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clauses from the logic program above. This problem can be solved by using a different

predicate for equality in each case. Thus ‘=’ will be used only in equations, and eq

elsewhere:

eq(X, λY. Z) ← X : Y = Z1, eq(Z1, Z).

eq(X, X).

Attempts to translate variables are prevented by inserting nonvar(X), so that the

translation from equations to λ-expressions is effected by the following Prolog pro-

gram:

eq( X, lambda(Y,Z) ) :- nonvar(X), X:Y=Z1, eq(Z1,Z).

eq( X, X ).

The first argument of eq must be a term occurring as a function in the left-hand side

of an equation (i.e. a defined function). For example, when the equations derived

in Section 4.2 are added to the above two clauses to give the Prolog program, the

query ?-eq(t,Z) succeeds with Z = lambda(F,lambda(X,F:(F:X))). Notice here

that the resulting value of Z is a λ-expression in standard form. λ-terms of the

form lambda(U,lambda(U,...)) can never be generated because every instance of

lambda(Y,Z) introduces new logic variables.

4.5 Results

In [Che87], a number of useful results are proven. It is shown that the equations

generated by the translation in Section 4.2 are “well-behaved” in the sense of [HO82]

(see Section 2.4), and that both the translation and its inverse as shown here terminate

for a given expression. More importantly, it is proven that for a λ-term t, translating

to equational form and back again results in a term that is equivalent to t (p. 55),
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and that β-reduction can be simulated by translating an expression to equations,

performing rewriting, and returning the result to λ-notation (p. 56). This last result

is proven by induction on the number of λx abstractions in an expression M . It is

shown that the reductions are the same for terms with zero and one abstraction, and

that an expression with k + 1 abstractions can be properly reduced to a term with

only k abstractions.

4.6 Summary

This chapter has presented a translation from λ-expressions in standard form to sets

of λ-free equations. In the process, a correspondence between logic variables and

λ-variables was established, and a method for representing λ-expressions in logic was

described. Prolog programs were also shown for performing both the translation and

its inverse.
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Rewriting by resolution

Functional expressions can be evaluated by a term rewriting system if functions are

defined by equations. (See Section 2.4.) The translation described in the last chapter

makes it possible to automatically convert function definitions in λ-notation into

sets of equations. Thus, the only ingredient missing from a scheme for functional

programming in logic is a logic-based rewriting system.

Such systems have already been described in the literature [vEY87, CY86]. The

approach taken in these papers was to create a logic program whose SLD-derivation

followed the steps required to implement an algorithm for rewriting expressions.

When rewrite rules were added as clauses to the logic program, it became possi-

ble to perform “Rewriting by Resolution”. This chapter will analyze the program

presented in [CY86] and show how it can be improved. The resulting program will

then be modified to implement various reduction orders.

34
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5.1 Introduction

Before describing “Rewriting by Resolution” in more detail, an illustration of the

general rewriting process is needed. For the purposes of the example, rewriting will

be performed over expressions built from the addition operator ‘+’, and positive

integers in successor notation, where addition is treated as a curried function of two

arguments, i.e. + : s(0) : s(s(0)). This family of expressions can be reduced by a

rewriting system using the following rewrite rules:

+ : 0 : X = X

+ : s(X) : Y = s(+ : X : Y )

So, for example, they can be used to reduce + : s(0) : 0 in these stages:

+ : s(0) : 0 = s(+ : 0 : 0) = s(0).

Each reduction in this sequence is the result of applying a rewrite rule to some part of

the current expression. The first step was to apply the rule + : s(X) : Y = s(+ : X : Y )

to the expression + : s(0) : 0, transforming it into s(+ : 0 : 0). Here the rewrite rule

was applied to the entire expression, but this will not always be the case. Often it is

necessary to search for subexpressions that match the left-hand side of a rule, as was

done in the second and final rewrite above. The reduction is finished when it is no

longer possible to apply any of the rewrite rules to any part of the current expression.

5.2 Rewriting by resolution

The rewrite rules can be considered to be clauses in logic with ‘=’ as a predicate sym-

bol. If axioms describing transitivity, substitutivity, and reflexivity are now added, a

system is created that is capable of rewriting by resolution. That is, a logic program is
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transitivity X = Z ← X = Y, Y = Z

substitutivity X : Y = X1 : Y1 ← X = X1, Y = Y1

s(X) = s(Y ) ← X = Y

reflexivity X = X ←

Figure 5.1: Equality axioms

formed whose SLD-derivation effects the rewriting of expressions. Transitivity is nec-

essary to continue the rewriting of an expression; substitutivity allows the rewriting

of subexpressions, and reflexivity permits an expression to be rewritten to itself when

no other axioms apply. One suitable set of equality axioms is shown in Figure 5.1.

Figure 5.2 shows how an SLD-derivation can be used to rewrite + : s(0) : 0 to

s(0). The initial query + : s(0) : 0=Z is resolved with the transitivity axiom from

Figure 5.1, yielding the next list of goals. Then the goal + : s(0) : 0 = U is matched

with the second equation in Section 5.1, resulting in the goal s(+ : 0 : 0) = Z. This

goal is resolved with the transitivity axiom again, and the substitutivity axiom from

Figure 5.1 is then used on the first goal in the new list, s(+ : 0 : 0) = U . Next, transi-

tivity is applied to the goal + : 0 : 0 = V , resulting in the list of goals shown in line six

of the derivation. The first of these goals is resolved with the equation + : 0 :X = X,

giving the goals 0 = V , and s(V ) = Z. Since 0 cannot be further reduced, reflexivity

is applied, leaving the goal s(0) = Z. As s(0) is canonical, reflexivity is appropriate

again, and the derivation is finished with Z = s(0).

But the desired SLD-derivation is one of many possible derivations given the logic

program described. For Prolog to perform the appropriate derivation, some sort of

control information must be supplied regarding when to apply a given axiom. It was



CHAPTER 5. FOO 37

← + : s(0) : 0 = Z

transitivity

← + : s(0) : 0 = U, U = Z

equation: + : s(X) : Y = s(+ : X : Y )

← s(+ : 0 : 0) = Z

transitivity

← s(+ : 0 : 0) = U, U = Z

substitutivity

← + : 0 : 0 = V, s(V ) = Z

transitivity

← + : 0 : 0 = U, U = V, s(V ) = Z

equation: + : 0 : X = X

← 0 = V, s(V ) = Z

reflexivity

← s(0) = Z

reflexivity

� with Z = s(0)

Figure 5.2: SLD-derivation that mimics rewriting
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noted in [vEY87] that there is an algorithm that can be used to guide the reduction

of an expression:

1. Check if the left-hand side of the leftmost goal is canonical. If it is, resolve the

goal with the reflexivity axiom, and go to 1; otherwise resolve the goal with the

transitivity axiom.

2. If possible, resolve the leftmost goal with one of the equations. If not, resolve

it with a substitutivity axiom.

This algorithm requires that it be possible to determine if an expression is canonical

(completely reduced) or not. Unfortunately, such a test is usually computationally

expensive. The test was avoided in [CY86] by reversing the order of the two steps

in the algorithm. Thus they assume that the expression is not canonical, and needs

to be rewritten. A term is canonical only if it cannot be reduced. Thus, if it is

impossible to use an equation or a substitutivity axiom, the current goal is resolved

with the reflexivity axiom. This new algorithm can be described as follows:

1. Apply transitivity, followed by a successful rewrite to the leftmost goal and go

to 1; or

2. Apply reflexivity to the leftmost goal if a rewrite is not possible.

Where by “successful rewrite” it is meant that the current expression is rewritten

into something different.

The Prolog program in Figure 5.3 is given in [CY86] for performing rewriting by

resolution. The clauses were tailored for the rewriting of functional expressions, and
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eq1(X,Z,F) <-- % transitivity

eq2(X,Y,yes),

eq1(Y,Z,F).

eq1(X,X,no). % reflexivity

eq2(X:Y,Z,F) <-- % substitutivity

eq1(X,X1,F1),

eq1(Y,Y1,F2),

eq3(X1:Y1,Z,F3), % function application

or(F1,F2,F3,F). % F is "no" if F1, F2, and F3 are "no"

eq2(X,Y,yes) <--

X = Y.

eq3(X,Y,yes) <--

X = Y. % using rewriting

eq3(X,X,no). % rewrite to itself

or(no,no,no).

or(no,yes,yes).

or(yes,no,yes).

or(yes,yes,yes).

Figure 5.3: Equality program from [CY86]
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do not describe successor arithmetic. A second substitutivity axiom would have to be

added to make this program capable of computing the example in the introduction:

eq2(s(X),s(Y),F) <-- eq1(X,Y,F).

A reduction is initiated by a call to eq1(Expr,Reduced_Expr,_).

In this program, the test for canonicality has been avoided, but a new difficulty has

arisen: it is now necessary to detect unsuccessful rewrites, as reflexivity must be used

if an expression is irreducible. For an expression to have been rewritten, at least one of

its subexpressions must have been reduced. (Or possibly the expression itself.) Thus,

to tell if an expression has been rewritten, [CY86] uses a system of flags to record

whether or not a rewrite has been performed at any level of the current expression.

In effect, the third argument in the eq relations describes the composition of the first

argument — the flag is yes if the first argument contains an expression found on the

left-hand side of an equation.

5.3 A new approach

The flags in the previous program are an ad hoc measure, but are required because the

eq2 relation does not properly describe successful rewrites without them. A successful

rewrite is defined as one in which an expression is reduced. Hence the call eq2(0,X)

should fail, as 0 is clearly canonical. But this call would succeed here with X = 0 if

it were not for the flags. In other words, eq2 defines canonical objects as expressions

that rewrite to themselves, instead of as terms that do not rewrite. Thus, the flags are

necessary to prevent infinite derivations in which a canonical expression is repeatedly

rewritten to itself.

A better approach would be to use a relation that properly defines a successful
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rewrite in place of eq2. If a single application of a rewrite rule to an expression is

referred to as a rewrite, then the new relation should state that eqB(X,Y) is true if

X reduces to Y in one or more rewrites. (In the development of the new program,

eqA and eqB will be used to distinguish the new relations from those in the previous

program.) Thus eqB(X,Y) would fail if X were canonical, as it would not be possible

to find at least one rewrite rule that would reduce X.

Defining the new relation

In defining the new relation, there are three different cases that must be dealt with:

rewriting the successor of an expression, rewriting a function application, and using

a rewrite rule to reduce an expression. The first of these is straightforward. A term

of the form s(X) can be successfully rewritten to s(Y ) if X reduces to Y in one or

more steps. This can be expressed by the following axiom:

eqB(s(X), s(Y )) ← eqB(X, Y ). (1)

Handling function application is more complicated, as rewriting an expression of the

form X : Y can be accomplished in one of two ways. Either X or Y (or both) must

be reduced if the term X : Y is to be reduced. Thus, either X is reduced to X ′ or Y

is reduced to Y ′ in one or more steps. Once a successful rewrite has been performed

on one of the subexpressions, there is no need to force a rewrite on the other. But

since eqB is to perform one or more rewrites, an attempt will be made to rewrite the

remaining subexpression. That is, if X has been reduced, then Y will be rewritten to

Y ′ in zero or more steps, and vice versa. This can be expressed by the pair of clauses

eqB(X : Y, X ′ : Y ′) ← eqB(X, X ′), eqA(Y, Y ′) (2)

eqB(X : Y, X ′ : Y ′) ← eqA(X, X ′), eqB(Y, Y ′), (3)

where eqA(A, A′) states that A rewrites to A′ in zero or more steps. The only case
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remaining is the application of a rewrite rule. An expression X reduces to Y if there

is a rewrite rule of the form X = Y , hence the clause:

eqB(X, Y ) ← X = Y. (4)

The clauses defining eqA are similar to the eq1 clauses, and incorporate the control

specified by the revised algorithm. That is, either successfully rewrite X to get Y ,

and then rewrite Y to Z in zero or more steps, or use reflexivity. This information is

described by the following pair of axioms:

eqA(X, Z) ← eqB(X, Y ), eqA(Y, Z) (5)

eqA(X, X) ← not(eqB(X, )). (6)

When the eqB and eqA clauses are combined, a logic program for performing

rewriting is obtained. Several simplifications can be made when this program is

translated into Prolog: first, the condition on axiom (6) can be removed as long as

(6) occurs after (5). Second, the first goal in the body of axiom (3) can be omitted if

(3) appears after axiom (2). Clause (2) will only fail if it is not possible to successfully

rewrite the first argument of the application, so it is not necessary to attempt rewriting

it again in (3). Thus, axiom (3) can be replaced by the following clause:

eqB(X : Y, X : Y ′) ← eqB(Y, Y ′). (7)

Combining the new eqA and eqB clauses gives the Prolog program in Figure 5.4.

5.4 Reduction orders

The control specified in the new rewriting program results in a system that imple-

ments applicative order reduction. This is because an attempt is made to rewrite
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eqA(X,Z) :- % X can be rewritten to Z if X

eqB(X,Y), % reduces to Y in 1 or more

eqA(Y,Z). % steps, and Y to Z in 0 or more.

eqA(X,X). % Otherwise X is canonical.

eqB(s(X),s(Y)) :-

eqB(X,Y).

eqB(X:Y,X1:Y1) :- % Rewrite X to X1 in 1 or more

eqB(X,X1), % steps, and Y to Y1 in 0 or more.

eqA(Y,Y1).

eqB(X:Y,X:Y1) :- % Or reduce Y to Y1 in 1 or more

eqB(Y,Y1). % steps.

eqB(X,Y) :- X=Y. % Apply a rewrite rule.

Figure 5.4: New rewriting program

both the operand and the operator before trying to use a rewrite rule. It is inter-

esting to observe the various reduction orders that can be achieved through minor

modifications of this program. For example, if the eqB goals are reordered such that

an equation is tried before any arguments are rewritten, a system is created that

performs reductions in an order somewhere between normal and applicative. (See

Figure 5.5.) The only thing that keeps this version from implementing completely

normal order reduction is the fact that all arguments are reduced if an outermost

reduction cannot be performed. Normal order can be achieved by removing the eqA

goal in the third eqB clause, yielding the program in Figure 5.6. Now, if an equation

does not apply to a function application, the subexpressions on either side of the :

are rewritten individually, from left to right, as required. Notice that the meaning of

eqB has changed. Instead of specifying one or more rewrites as it did in the previous

programs, it now requires exactly one rewrite.
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eqA(X,Z) :-

eqB(X,Y),

eqA(Y,Z).

eqA(X,X).

eqB(X,Y) :- % Try to reduce the outermost

X=Y. % redex first.

eqB(s(X),s(Y)) :-

eqB(X,Y).

eqB(X:Y,X1:Y1) :- % If it doesn’t work, then try

eqB(X,X1), % rewriting both X and Y.

eqA(Y,Y1).

eqB(X:Y,X:Y1) :-

eqB(Y,Y1).

Figure 5.5: Rewriting system implementing mixed-order evaluation

eqA(X,Z) :-

eqB(X,Y),

eqA(Y,Z).

eqA(X,X).

eqB(X,Y) :- % Try to reduce the outermost

X=Y. % redex first.

eqB(s(X),s(Y)) :-

eqB(X,Y).

eqB(X:Y,X1:Y) :- % If it doesn’t work, then

eqB(X,X1). % try reducing X.

eqB(X:Y,X:Y1) :-

eqB(Y,Y1). % Or reduce Y.

Figure 5.6: Rewriting system implementing normal-order evaluation
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5.5 Summary

This chapter has focused upon the development of a Prolog program whose SLD-

derivation effects term rewriting. Previous rewriting approaches were analyzed, and

an improved version of the program presented in [CY86] was formulated. Several

variations were shown which perform reduction in orders varying from applicative to

normal-order. Since functional programming can be implemented by term rewriting,

these logic-based systems allow functional expressions to be evaluated in Prolog.
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Compilational approach

In the last chapter, a rewrite-based functional programming system was proposed.

The efficiency of the system, while surprisingly good for a system implemented in

Prolog, leaves room for improvement. (See benchmarks in Appendix A.) Like all

rewriting systems, it spends the majority of its time searching for subexpressions to

rewrite.

Expressions contain information, when precedence rules are taken into account,

about the order in which their subexpressions must be evaluated. However, this in-

formation is not discovered by a rewriting system until a computation is underway.

Thus an optimization would be to find the subexpressions requiring evaluation ahead

of time, and determine the order in which they must be computed. Once the required

computations have been identified, they can be translated into Prolog, allowing ex-

pressions to be evaluated in logic. This analysis and translation can also be used to

help compile the equations themselves into equivalent logic clauses, so that it becomes

possible to perform efficient functional programming in logic without the use of the

term rewriting system.

46
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Figure 6.1: Disassembling an expression

6.1 Introduction

As an illustration, imagine trying to evaluate the expression 2*(3+4). It is clear that

the term 3+4 must be evaluated before the multiplication can be performed. Thus one

could first have the computer solve 3+4 = X, and then use the result in calculating 2*X

= Answer. So it is possible to disassemble expressions and arrange the subexpressions

so that performing a series of primitive computations results in the evaluation of the

original term1. (See Figure 6.1.) If all expressions were “flattened” in this manner

before evaluation, a simpler rewrite system could be used to compute their values, as

it would not be necessary to search for subexpressions to be rewritten.

But once expressions have been divided into their basic subcomputations, there

is little reason to use a rewriting system of any kind — the individual computations

can be translated directly to Prolog instead. For example, 3+4 = X can be expressed

as the relation sum(3,4,X), and 2*X = Answer as times(2,X,Answer). Thus the

1Note that the order in which the calculations are performed is important. The discussion

in this chapter will assume that applicative order evaluation is to be performed, and will order

subexpressions accordingly.
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original expression could be computed by following query2.

?- sum(3,4,X), times(2,X,Answer).

6.2 Translating equations to relational form

The technique described above was used to break an expression into individual rela-

tions so that its value could be computed by Prolog. This procedure is utilized by

a process called relationalization [vEM81] to translate the equations themselves into

logic clauses.

The relationalization axiom

∀x1, . . . , xn, v f (x1, . . . , xn) = v ↔ ff (x1, . . . , xn, v) (1)

states that ff relates the value of the function f to its arguments. This axiom rep-

resents a family of such axioms, one for each function f to be relationalized. For

example, the first transformation in the previous section can be justified by the fol-

lowing axiom:

∀x, y, z x + y = z ↔ sum(x, y, z). (2)

And the relationalization of function application is described by this axiom:

∀x, y, z x : y = z ↔ apply(x, y, z). (3)

Since all of the equations generated by the translation described in Chapter 4 have

left-hand sides of the form x : y, axiom (3) can be used to convert the equations

2The reader may wonder why the relational form is used here to describe arithmetic when the

introduction to this thesis favored the is built-in predicate. It is useful to think of the individual

subcomputations as representable by relations, as the extensions necessary for function application

require the relational notation.
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to clauses. But a problem is encountered when trying to relationalize an equation

whose right-hand side contains an evaluable expression. The z in axiom (3) refers to

the value of the right-hand side. Thus, in cases where the right-hand side requires

evaluation, the expression must be broken into subexpressions and arranged such that

the value of the right-hand side is computed and used as z.

As an example of the relationalization process, consider transforming the equa-

tion g(F ) : X = F : (F : X) to relational form. The equation states that the value

of g(F ) : X is the same as the value of F : (F : X). In other words, g(F ) : X = V if

and only if F : (F : X) = V . The relationalization axiom for application allows the

left-hand side of this equation to be written as apply(g(F ), X, V ), but this relation is

only true if F : (F : X) = V . Thus the complete relation is described by the following

clause:

apply(g(F ), X, V ) ← F : (F : X) = V.

The condition here can be flattened, as was done in the introduction to this chapter,

yielding a pair of equations: F : X = U , and F : U = V . When these equations are

relationalized, the clause above can be written as

apply(g(F ), X, V ) ← apply(F, X, U), apply(F, U, V ),

which is the relationalized version of g(F ) : X = F : (F : X). (Note that the clause

produced by this process is identical to the one used by Warren in Section 3.3.)

6.3 Our approach to relationalization

A Prolog program is given in [vEM81] for relationalizing equations, but it is unjus-

tified, and a poor example of logic programming. [vEY87] proves the correctness of

the translation and describes an improved method for performing the conversion, but
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does not attempt automation. Our approach is based on the observation that the re-

lationalization axioms, in conjunction with axioms of equality, can be used to derive

from an equation its relationalized form. The remainder of this chapter will formal-

ize such proofs and automate them, so that relationalized clauses can be obtained

directly from their proofs.

An informal proof can be constructed by translating the left-hand side of an

equation to its relational version, and forming a chain of implications showing that

the relation holds only for the relationalized form of the right-hand side. As an

example, the equation used above can be converted to relational form as follows:

First, translate the left-hand side, g(F ) : X , to apply(g(F ), X, Z). Now form the

following chain of implications:

apply(g(F ), X, Z) ← g(F ) : X = Z ← g(F ) : X = U, U = Z ← F : (F : X) = Z

← F : X = U, F : U = Z ← apply(F, X, U), apply(F, U, Z).

The implications are justified, respectively, by relationalization axiom (3), transitivity,

the equation, substitutivity, and relationalization again. The chain proves

apply(g(F ), X, V ) ← apply(F, X, U), apply(F, U, V ),

which is the desired relationalized form of the equation g(F ) : X = F : (F : X).

Deriving the relationalized clause in this manner assures us that the result is cor-

rect, but it is also important for our purposes that the transformation be automat-

able. The chain of implications suggests that it is possible to have Prolog create

such a proof, but the chain must first be formalized into an SLD-derivation. This

requires precise definitions of the axioms used as they are the input clauses of the

SLD-derivation.

The derivation in Figure 6.2 could be performed by Prolog if two obstacles were
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← apply(g(F ), X, Z)

apply(X, Y, Z) ← X : Y = Z

← g(F ) : X = Z

X = Z ← X = Y, Y = Z

← g(F ) : X = Z1, Z1 = Z

g(F ) : X = F : (F : X)

← F : (F : X) = Z

X : Y1 = Z ← Y1 = Y2, Y2 = Z

← F : X = Z2, F : Z2 = Z

X : Y = Z ← apply(X, Y, Z)

← apply(F, X, Z2), F : Z2 = Z

X : Y = Z ← apply(X, Y, Z)

← apply(F, X, Z2), apply(F, Z2, Z).

Figure 6.2: SLD-derivation of “twice” clause
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overcome: First, the derivation is but one of many possible derivations given the input

clauses shown. Prolog would require some sort of control information to ensure that

the appropriate derivation were performed. Second, and more importantly, the SLD-

derivation is incomplete. Prolog derivations, when they terminate, are expected to

succeed or fail. The derivation in Figure 6.2 does neither. It is as if a normal derivation

were frozen before completion, yielding a “conditional answer” [Vas86, vE88]. That

is, a clause whose head is the initial goal with the cumulative substitution applied

to it, and whose body is the final goal statement in the derivation. The derivation

proves that the conditional answer is logically implied by the input clauses of the SLD-

derivation. Before the translation can be automated, both the conditional answer and

control problems must be addressed.

6.3.1 Computing conditional answers

Derivations yielding conditional answers are identical to normal SLD-derivations, ex-

cept that they are not allowed to terminate. Instead, the derivation must be stopped

when the desired conditional answer has been obtained. Thus it makes sense to use

a meta-interpreter to produce conditional answers, as this allows the basic deriva-

tion mechanism of Prolog to be used. A general meta-interpreter yielding conditional

answers is shown in Figure 6.3. The first clause describes the trivial conditional

answer: a goal is true if it is true. The next clause states that the conditional answer

Concl ← Cond holds if a goal is selected from the list of goals Concl and resolved

with a clause from the database, yielding a new list of goals Cond. The program on

which the meta-interpreter acts is encoded in the meta-language by clauses of the

form clause(Head,Body) where Body is a list of terms representing atoms in the

object language. The meta-interpreter allows a more general goal-selection scheme

than Prolog in that it is possible to choose a goal other than the leftmost.
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Concl if Concl <-

Concl if Cond <- decompose(Concl, Front, Goal, Back),

Head = Goal,

clause(Head, Body),

concatenate(Body, Back, Back1),

concatenate(Front, Back1, Cond1),

Cond1 if Cond.

Figure 6.3: Conditional answer meta-interpreter

6.3.2 Adding control information

The meta-interpreter in Figure 6.3 gives many different conditional answers. To

compute exactly the one desired requires appropriate definitions for decompose and

clause. Notice that the computation strategy used in the derivation in Figure 6.2 is

quite straightforward. There are several steps that will always be performed at the

beginning of any derivation that proves a relationalized equation:

1. Apply an axiom to unrelationalize the initial goal,

2. Resolve the resulting equation with the transitivity axiom,

3. Make use of the equation to be relationalized.

Thus these initial steps can be programmed into the meta-interpreter. Then, as long

as there are still goals with = as predicate symbol, they are selected and relationalized

if possible. It may be that the expression on the left-hand side of the = requires

flattening before relationalization can be performed. If this is the case, the goal

should be resolved with an appropriate substitutivity axiom. When no more such
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goals are found, the derivation stops and returns the computed conditional answer.

A more sophisticated meta-interpreter incorporating this control information can be

found in Appendix C.

6.4 Computing with relationalized equations

Once a set of equations has been translated to relational form, they can be used to

efficiently compute higher-order functional expressions in Prolog. Any expression to

be evaluated can be relationalized into a list of goals that, when posed to Prolog as

a query, will compute the value of the expression. For example, twice : succ : 0 would

be translated into a pair of goals, forming the query:

?- apply(twice,succ,X), apply(X,0,Answer).

The result of computing a function-valued expression will be an introduced func-

tor, and it can be transformed back into the corresponding function in λ-notation by

the program in Section 4.4. For example, evaluating twice : succ would result in the

term g(succ), which is equivalent to the function lambda(X,succ:(succ:X)).

6.5 Summary

Expressions can be broken up into easily-computable subexpressions and ordered

such that their evaluation effects the computation of the original expression. The

subcomputations resulting from disassembling an expression in this manner can be

translated to Prolog relations, allowing arithmetic expressions to be computed by

Prolog. This procedure is employed by a process called relationalization to translate
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equations to logic clauses, allowing efficient evaluation of functional expressions in

logic.

This chapter presented a method for automating the translation from equation

to relationalized clause such that the resulting clause is obtained directly from its

proof. The proof is in the form of an incomplete SLD-derivation, or conditional

answer. Thus, the program for deriving the relationalized version of an equation is a

specialized meta-interpreter that collects the appropriate conditional answers.
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Conclusions

This thesis has presented a pair of methods for evaluating higher-order functional

expressions in logic. It was shown in Chapter 4 that any expression in λ-notation can

be translated into a set of equations. The resulting equations can then either be used

as rewrite rules by a logic-based term rewriting system (Chapter 5), or compiled to

an equivalent set of directly-executable Prolog clauses (Chapter 6). The relationship

between λ-expressions, equations, and these two functional programming schemes is

summarized in Figure 7.1.

It should be noted that the results of relationalizing the “twice” example are

identical to the clauses used by Warren in [War82] to compute the same expression

in Prolog. However, it is impossible to tell if our translation is the same as his, as

[War82] does not fully describe his technique.

One of the benefits of both of our approaches is that function-valued expressions

can be returned to the user in λ-notation. This is in contrast to Lisps, which do not

support λ-notation, and are therefore unable to report the result of a function-valued

computation.
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Figure 7.1: Relationship between λ’s, equations, and our approaches
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Benchmark tests were performed to assess the efficiency of the functional pro-

gramming schemes presented in this thesis, and the results are promising. (Detailed

information on the tests can be found in Appendix A). In fact, the “twice” example

was computed several times faster by our compilational system than by the faster

of the two Lisp implementations that participated in the tests. However, the Prolog

in which our systems were written also proved to be several times faster than the

Lisps on general list-processing tasks, complicating an interpretation of the results.

Though it does not make sense to directly compare the times required to evaluate

the functional benchmark in light of the list-processing differences, the performance

of the Prolog-based systems is quite impressive.

The contributions in this thesis are:

• Prolog programs for automatically performing the translation from λ-expressions

to equations, and from introduced function symbols back to λ-expressions were

shown.

• An improved logic-based rewriting system was derived. Variations were also

shown that perform reductions in orders ranging from applicative to normal-

order.

• A method for automatically deriving relationalized clauses from their proofs

was demonstrated.

• Benchmarks were performed that tentatively indicate that functional program-

ming in logic is competitive with Lisp implementations for evaluating higher-

order functional expressions.
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7.1 Future work

Our experience indicates that there are several areas that need to be more fully

investigated:

Mixing equations and λ-notation: Both of the methods proposed for performing

functional programming in logic require that functions be defined by equa-

tions. The translation presented in Chapter 4 makes it possible to start with

λ-notation, but there is no reason why the user could not define functions with

equations directly, or mix equations and λ-expressions. It would seem that the

two complement each other, and more work should be done to determine how

best to use a combination of the formalisms.

Lazy evaluation: A rewriting system was shown that performs normal-order eval-

uation, but it is mainly of theoretical interest as plain normal-order evaluation

is quite inefficient. A logic-based system that implements fully lazy evaluation

would be much more powerful and useful.

Compiling different reduction orders: The rewriting approach permits different

reduction orders, but the compilational system performs only applicative-order

evaluation. Further work should be done in trying to similarly compile other

reduction orders.

Virtual machines: Only a small subset of the Prolog language is used in computing

with the clauses resulting from relationalization. If the required WAM instruc-

tions were isolated, it might be that an optimized virtual machine could be

constructed for evaluating functional expressions.

Including functions in Prolog: This thesis has made no mention of how func-

tional programming capabilities should be integrated into Prolog. One solution,
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that would not require any significant changes to the Prolog framework, would

be to allow functional expressions as the second argument to the is built-in

predicate. However, more research should be done to determine how best to

interface the two paradigms, and what sort of syntax should be used to denote

functional expressions.
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Appendix A

Benchmarks

Designing and implementing benchmark tests is often difficult work. One must try to

create fair tests that, as much as possible, test only a single aspect of performance.

Then, once the results of the tests are in, one must be careful not to draw unfounded

conclusions from them. But properly designed benchmarks can serve as a useful com-

parison. In this chapter, an attempt will be made to compare both of the functional

evaluation strategies described in this thesis to existing functional languages.

There are, of course, many different aspects of these systems that could be com-

pared. One of the most important and easily measured of these is execution speed.

Speed is of primary importance here because both Lisp and Prolog require garbage

collection in order to fit into a reasonable amount of memory, and poor garbage collec-

tion schemes translate into slower execution speeds. In particular, the speed at which

the systems can evaluate expressions involving higher-order functions is of interest,

as Prolog is already able to evaluate simple arithmetic expressions.

64
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The languages

Two different Lisp implementations were used as examples of functional programming

systems, primarily because they were readily available to us. They were Franz Lisp

(Opus 38.91) and IBUKI Common Lisp (Release 01/01). The logic-based systems

were implemented in ALS-Prolog (Version 1.01). Both of the lisp implementations

could be used as interpreters or compilers, and the benchmarks were evaluated in

each mode.

The tests

As was mentioned in Section 2.2, computing multiple applications of the “twice”

function makes a good test of higher-order function processing, and has been used as

a benchmark since at least [Tur79]. Thus, the evaluation of the expression

((((twice : twice) : twice) : twice) : succ) : 0

was chosen as the first benchmark. (twice and succ are defined in Figure 2.1.) But

even if a Prolog-based system were to perform this computation faster than the Lisps,

the possibility remains that a fast Prolog might do everything better than a slow

Lisp. Hence, two more tests were performed that were designed to compare the list

processing abilities of the Lisps and ALS-Prolog: näıve reversal of a nested list, and

the creation of all permutations of a given list. It is hoped that the results of these last

two tests will provide more of a baseline against which the results of the higher-order

functional evaluation benchmark can be compared.

A.1 Technical foreword

All tests were executed on a Sun 3/280. The resolution of the timer in each language

was 1/60
th

of a second. Since some of the tests being measured took only a few
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hundredths of a second, it was necessary to repeat each benchmark a number of times

and measure the total elapsed time. The list-processing tests were each repeated 50

times1. For fewer repetitions, garbage-collection often influenced the results and gave

poor repeatability. Since the “twice” benchmark took substantially longer, figures for

it are the average of only 5 runs.

That the Lisps were of different dialects turned out to be only a minor factor. The

largest difference between the two had to do with creating the closures necessary for

implementing the “twice” benchmark. The list-processing tests are, in fact, identical

except for the calls used to read the internal clock. Thus only one Lisp program will

be presented for each of the last two tests.

A.2 The “twice” benchmark

A.2.1 Prolog notes

The functional expression above was evaluated by both the rewrite-based and com-

piled systems. The compiled program consisted of the following clauses:

twice:F = g(F).

g(F):X = F:(F:X).

succ:X = Y :- Y is X+1.

And the computation was initiated by the query

?- apply(twice,twice,U), apply(U,twice,V), apply(V,twice,W),

apply(W,succ,X), apply(X,0,Result).

1Measuring the time to complete 50 iterations of a given test reduces the smallest measurable

time interval to .0003 seconds, but the variability between test runs was closer to .001 seconds.



APPENDIX A. FOO 67

The rewrite-based approach was represented by both the applicative and mixed-order

rewrite programs from Chapter 5 (Figures 5.4 and 5.5). Unfortunately, these systems

were unable to compute the benchmark without a slight modification that changed

the way in which they used memory: a cut was inserted after the first goal in the first

eqA clause in each program so that the systems were able to eliminate unnecessary

choice-points.

A.2.2 Franz Lisp code

(declare (special t0 f))

(defun tw (f) (fclosure ’(f) ’(lambda (x) (funcall f (funcall f x)))))

(defun succ (x) (+ x 1))

(defun bench ()

(progn

(setq t0 (car (ptime)))

(funcall (funcall (funcall (funcall (tw ’tw) ’tw) ’tw) ’succ) 0)

(- (car (ptime)) t0)

) )

A.2.3 IBUKI Common Lisp code

(defun tw (f) (function (lambda (x) (funcall f (funcall f x)))))

(defun succ (x) (+ x 1))

(defun bench ()

(progn

(setq t0 (funcall ’get-internal-run-time))

(funcall (funcall (funcall (funcall (tw ’tw) ’tw) ’tw) ’succ) 0)

(- (funcall ’get-internal-run-time) t0)

) )
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A.3 The “näıve reverse” benchmark

This is a slight modification of the traditional “näıve reverse” benchmark. Here

indefinite nesting of lists is allowed within the list to be reversed. Measured time was

to reverse the following list:

((a b c (d e f (g h) (i)) j k l (m n) (o p) q r (s (t (u))))

(a b c (d e f (g h) (i)) j k l (m n) (o p) q r (s (t (u))))

(a b c (d e f (g h) (i)) j k l (m n) (o p) q r (s (t (u))))

(a b c (d e f (g h) (i)) j k l (m n) (o p) q r (s (t (u))))

(a b c (d e f (g h) (i)) j k l (m n) (o p) q r (s (t (u))))

(a b c (d e f (g h) (i)) j k l (m n) (o p) q r (s (t (u))))

(a b c (d e f (g h) (i)) j k l (m n) (o p) q r (s (t (u))))

(a b c (d e f (g h) (i)) j k l (m n) (o p) q r (s (t (u))))

(a b c (d e f (g h) (i)) j k l (m n) (o p) q r (s (t (u))))

(a b c (d e f (g h) (i)) j k l (m n) (o p) q r (s (t (u)))))

A.3.1 Prolog code

% reversed(List,Tsil) is true if Tsil is the reversed version

% of List. For example, reversed([a,[b,c],d],[d,[c,b],a]) is true.

reversed([],[]).

reversed(X,X) :- atomic(X).

reversed([X|Xs],Back) :-

reversed(X,Xb),

reversed(Xs,Xsb),

concatenate(Xsb,[Xb],Back).

concatenate([],X,X).

concatenate([X|Xs],Ys,[X|Zs]) :- concatenate(Xs,Ys,Zs).
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A.3.2 Lisp code

The code for these tests was created with the goal of having both languages perform

the same steps. Thus the Lisp-based version of the näıve reverse benchmark uses

concat when it would be much more efficient to have used the list built-in to

concatenate lists. One could argue that Lisp is being handicapped in order to give

Prolog a better chance, but an equivalent optimization to the Prolog code, the use of

difference-lists, was not implemented.

(defun reverse (l)

(cond

((eq l nil) nil)

((listp l) (concat (reverse (cdr l)) (cons (reverse (car l)) nil)))

( t l )

) )

(defun concat (l1 l2)

(if (eq l1 nil) l2 (cons (car l1) (concat (cdr l1) l2)))

)

A.4 The “permutation” benchmark

In this test, each language was required to generate a list of all permutations of the

list [a,b,c,d,e,f]. Generating permutations can be done recursively: Assume that

a list of the permutations of the first n elements exists. To get the list for n + 1

elements, the new element is inserted in each possible place in each list.

A.4.1 Prolog code

% permutations(List,Lists) is true if Lists is a list containing
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% all permutations of List. For example permutations([a,b,c],

% [[a,b,c],[b,a,c],[b,c,a],[a,c,b],[c,a,b],[c,b,a]]) is true.

permutations([],[[]]).

permutations([X|Xs],Ps) :-

permutations(Xs,P1s),

inserted_in_all(X,P1s,Ps).

% inserted_in_all(Element,Lists,NewLists) is true if NewLists

% is the list of lists resulting from inserting Element into all

% possible positions in each of the lists in Lists. For example,

% inserted_in_all(a,[[b],[c]],[[a,b],[b,a],[a,c],[c,a]]) is true.

inserted_in_all(E,[],[]).

inserted_in_all(E,[L|Ls],Is) :-

inserted_in([],E,L,Set1),

inserted_in_all(E,Ls,Set2),

concatenate(Set1,Set2,Is).

% inserted_in(ToTheLeft,Element,List,Lists) is true if Lists is

% the list of lists resulting from inserting Element into all pos-

% sible positions in List. In addition, all lists in Lists have

% ToTheLeft as a prefix. For example, inserted_in([a],b,[c,d],

% [[a,b,c,d],[a,c,b,d],[a,c,d,b]]) is true.

inserted_in(ToLeft,E,[],[List]) :-

concatenate(ToLeft,[E],List).

inserted_in(ToLeft,E,[X|Xs],[First|Lists]) :-

concatenate(ToLeft,[X],NewLeft),

inserted_in(NewLeft,E,Xs,Lists),

concatenate(ToLeft,[E,X|Xs],First).

concatenate([],X,X).

concatenate([X|Xs],Ys,[X|Zs]) :- concatenate(Xs,Ys,Zs).

A.4.2 Lisp code

The Lisp code mirrors the Prolog implementation.
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Interpreted Lisps Compiled Lisps Prolog-based systems

IBUKI Franz IBUKI Franz Rewrite(a) Rewrite(m) Compiled

67.0 25.6 7.5 19.7 68.8 21.2 1.5

Table A.1: Results of the “twice” benchmark

(defun permutations (l)

(if (eq l nil)

(cons nil nil)

(insert_in_all (car l) (permutations (cdr l)))

) )

(defun insert_in_all (e l)

(if (eq l nil)

nil

(concat (all_inserts nil e (car l)) (insert_in_all e (cdr l)))

) )

(defun all_inserts (to_the_left e l)

(if (eq l nil)

(cons (concat to_the_left (cons e nil)) nil)

(cons

(concat to_the_left (cons e l))

(all_inserts (concat to_the_left (cons (car l) nil)) e (cdr l))

) ) )

A.5 Table of results

The results of the benchmarks are summarized in tables A.1 and A.2. All timings

are in seconds. In Table A.1, Rewrite(a) stands for the applicative order program,

and Rewrite(m) denotes the mixed order variant.



APPENDIX A. FOO 72

Interpreted Lisps Compiled Lisps Prolog

Test IBUKI Franz IBUKI Franz

reverse 1.800 0.656 0.078 0.157 0.023

permutation 1.973 0.857 0.383 0.382 0.065

Table A.2: Results of the list-processing benchmarks
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Code for translating λs to

equations

:- op(100,yfx,’:’).

% translate(Xs,Ys) holds if Ys is a list of lambda-free

% expressions equivalent to the expressions in the list Xs. As

% lambda expressions in Xs are found and translated to equations,

% new clauses are created and asserted.

% As an example, translate([lam(X,X+Y)],[g(Y)]) is true, and

% would result in the assertion of the clause "g(Y):X = X+Y".

translate([],[]).

translate([X|Xs],[X|Ys]) :- % ignore variables

var(X),

translate(Xs,Ys).

translate([X|Xs],[X|Ys]) :- % ignore atoms

atomic(X),

translate(Xs,Ys).

translate([lam(X,Y)|Xs],[N|Ys]) :-

equivalent(lam(X,Y),N), % process lambda expressions

translate([Y],[FinalY]), % try to process body

assert(N:X = FinalY),

73
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translate(Xs,Ys).

translate([X|Xs],[NewX|Ys]) :-

nonvar(X),

X \== lam(_,_),

X =.. [Functor|Args], % decompose a term

translate(Args,NewArgs), % process the args

NewX =.. [Functor|NewArgs], % put the term back together

translate(Xs,Ys).

% equivalent(X,Y) is true if Y is an introduced functor that

% is equivalent to the lambda expression X. That is, Y will

% contain the free variables in X.

equivalent(lam(X,Y),Z) :-

varlist(lam(X,Y),Vars), % find the free vars

unused_name(NewName), % get an unused name

Z =.. [NewName|Vars]. % create the functor

%

% varlist( T, L ) holds if L is a list all occurences of distinct

% variables in term T

%

% written by: Mantis H.M. Cheng (Oct20/87)

%

varlist( X, L ) :-

varlist( X, [], [], L ),

! .

%

% auxiliary predicates of varlist/2

%

varlist( X, Bound, FreeSoFar, NewFree ) :-

var( X ),

free_var( X, Bound, FreeSoFar, NewFree ).

varlist( X, _, L, L ) :-

atomic( X ),

! .

varlist( [], _, L, L ) :-

! .
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varlist( T, Bound, FreeSoFar, NewFree ) :-

T =.. [lam,X,Y],

var( X ),

join_var( X, Bound, NewBound ),

varlist( Y, NewBound, FreeSoFar, NewFree ),

! .

varlist( T, Bound, L0, L ) :-

T =.. [F|A],

!,

varlist1( A, Bound, L0, L ) .

varlist( [A|T], Bound, L0, L ) :-

varlist1( [A|T], Bound, L0, L ) .

%

% auxiliary predicates of varlist4/

%

varlist1( [], _, L, L ) .

varlist1( [T|A], Bound, L0, L ) :-

varlist( T, Bound, L0, L1 ),

varlist1( A, Bound, L1, L ) .

% join_var is an auxiliary predicate of varlist4/ that adds a

% variable X to a list of unique variables without instantiating it

% or unifying it with anything.

join_var( X, [], [X] ) :-

! .

join_var( X, [Y|Z], [Y|Z] ) :-

X == Y,

! .

join_var( X, [Y|Z], [Y|Z1] ) :-

join_var( X, Z, Z1 ) .

% free_var(V, Bs, Fs, NewFs) holds if NewFs is the list of

% variables obtained by possibly adding V to the list Fs. Bs and

% Fs are expected to be lists of bound and free variables,

% respectively. If V occurs in the list of bound vars, then it is

% not to occur in NewFs. Otherwise, it is added to Fs, yielding NewFs.
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free_var( Var, Bound, Free, Free ) :-

varmember(Var, Bound ).

free_var( Var, Bound, Free, NewFree ) :-

non_varmember( Var, Bound ),

join_var( Var, Free, NewFree ).

% varmember and non_varmember are variants of member and

% non_member that work with lists of variables, as they are careful

% not to instantiate the list elements.

non_varmember(X,[]).

non_varmember(X,[Y|Ys]) :-

X \== Y,

non_varmember(X,Ys).

varmember(X,[Y|Ys]) :-

X == Y.

varmember(X,[Y|Ys]) :-

X \== Y,

varmember(X,Ys).

% unused_name instantiates its argument to a unique atom

% formed by appending a number to the string "introduced_".

% When the translation routine is first run, the last used

% number is set to zero. Calls to unused_name increment the

% last used number before using it, and store the result.

last_num(0).

unused_name(Name) :-

last_num(X), % find last used number

Num is X + 1, % increment it

retract(last_num(_)),

asserta(last_num(Num)), % store it

name(Num,NumString),

append("introduced_",NumString,String),

name(Name,String).
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Relationalization meta-interpreter

:- op(100,yfx,’:’).

% condAnswer(Conc,Cond) is true if the list of goals Cond can

% be derived from the initial goal Conc. The derivation uses the

% goal selection strategy described by "dec", and clauses of the

% form "clause([Head|Body])". Control over the general form of the

% derivation is imposed by the forced application of transitivity

% and the defining equation in condAnswer, and of substitutivity

% in condAnswer2.

condAnswer(Conc,Cond) :-

clause([Conc,X=Y]), % un-relationalize

clause([eq(Conc,X)]), % use defining equation,

condAnswer2([X=Y],Cond). % and transitivity

% condAnswer2 is true if a successful derivation exists using the

% goal selection strategy given in "dec", and the clauses of the

% form "clause([Head|Body])".

condAnswer2(Conc,Cond) :-

decompose(Conc,Front,Goal,Back),

clause([Goal|Body]),
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concatenate(Body,Back,Tail),

concatenate(Front,Tail,Conc2),

condAnswer2(Conc2,Cond).

condAnswer2(Conc,Conc) :-

not(decompose(Conc,F,Goal,B)).

% decompose(Cond,F,X,B) is true if X is a goal from the list of goals

% Cond, and concatenate(F,[X|B],Cond). Here decompose is restricted such

% that it chooses only goals of the form X=Y.

decompose(Cond,Front,X=Y,Back) :-

lDiff(Cond,Front,X=Y,Back).

% lDiff(Xs,F,E,B) is true if concatenate(F,[E|B],Xs).

lDiff([X|Xs],[],X,Xs).

lDiff([X|Xs],[X|Ys],U,Back) :- lDiff(Xs,U,Ys,Back).

% An expression X is constructed if it is not a variable and

% it’s not atomic.

constructed(X) :- nonvar(X), not(atomic(X)).

clause([ eq( g(F):X, F:(F:X) ) ]). % Defining equation

% The following clauses define substitutivity. They will only

% be applied if the head expression contains a constructed subexpression.

% Clauses of this form are required for each constructor.

clause([X:Y=Z,Y=Y1,X:Y1=Z]) :- constructed(Y).

clause([X:Y=Z,X=X1,X1:Y=Z]) :- constructed(X).

clause([X+Y=Z,Y=Y1,X+Y1=Z]) :- constructed(Y).

clause([X+Y=Z,X=X1,X1+Y=Z]) :- constructed(X).

% To define the relationship between predicates and equations.
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clause([X:Y=Z,apply(X,Y,Z)]).

clause([apply(X,Y,Z),X:Y=Z]).

clause([X+Y=Z,plus(X,Y,Z)]).

clause([plus(X,Y,Z),X+Y=Z]).
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