
Java-Based DSM with Object-Level Coherence Protocol
Selection

Roumen Kaiabachev and Brad Richards

Computer Science Department
Vassar College

Poughkeepsie, NY 12604
�rokaiaba�richards�@cs.vassar.edu

ABSTRACT
This paper describes a Java-based distributed shared mem-
ory system (DSM) that simultaneously supports multiple
coherence protocols. Coherence is enforced at the ob-
ject level, and programmers can select the desired pol-
icy at object-creation time. Our work extends the Aleph
Toolkit [1], a framework for distributed computing in Java.
Since Aleph and our extensions are written in pure Java,
the system is completely portable and can leverage imme-
diately off of future improvements in the JDK. We demon-
strate that a multiple-writer protocol that we added to the
Toolkit outperforms existing Aleph protocols for some ap-
plications, and that a combination of protocols can provide
performance superior to that resulting from the use of a sin-
gle coherence scheme.

KEY WORDS
Distributed Shared Memory, Java, Coherence Protocols

1 Introduction

This paper describes a Java-based distributed shared mem-
ory system (DSM) that simultaneously supports multiple
coherence protocols. Coherence is enforced at the ob-
ject level, and programmers can select the desired pol-
icy at object-creation time. Our work extends the Aleph
Toolkit [1]. Aleph offers several coherence protocols [2],
but requires that a single scheme be selected to manage co-
herence for entire programs. Our work was motivated by
the observation that no single protocol works best for all
types of shared data [3]. We sought the same improvements
for parallel Java programs that page-based DSM systems
like Munin [4] have demonstrated in other domains, when
matching appropriate coherence mechanisms with specific
regions of shared memory based on patterns of access.

Our approach is similar to the Java DSM systems

Jackal [5] and JavaParty [6], in that we use a distributed ob-
ject paradigm instead of sharing arbitrary regions of mem-
ory. But Jackal and JavaParty both require custom compil-
ers (the former to implement coherence mechanisms, the
latter to handle constructs added to Java). Since Aleph and
our extensions are written in pure Java, our system is com-
pletely portable, requires no special compilers or support,
and can easily take advantage of improvements in the JDK.
The Java/DSM [7] system creates a parallel Java environ-
ment by distributing a Java virtual machine across a col-
lection of machines, but requires access to a commercial
page-based DSM system, TreadMarks [8], and can suffer
from false-sharing on some applications due to the larger
coherence regions. Furthermore, none of the systems men-
tioned above offers simultaneous support for multiple co-
herence protocols.

The remainder of this paper is structured as follows.
Sections 2 and 3 describe the Aleph Toolkit and our ex-
tensions. Performance results are presented in Section 4.
Section 5 gives a detailed treatment of related work, and
Section 6 summarizes our contributions and outlines future
work.

2 Aleph

Distributed shared memory systems implement a shared
global memory by transparently moving copies of data
from processor to processor in response to shared-memory
accesses. A coherence protocol ensures that parallel appli-
cations see a consistent view of memory by managing the
replication and movement of this data. In general, a proto-
col ensures some form of consistency either by invalidating
outstanding copies when a processor writes to a shared lo-
cation, or by updating these copies with the new value.

The Aleph Toolkit provides a Java framework for
shared-object distributed computing. It provides the abil-
ity to start threads on remote processors, and to communi-



GlobalObject g =
new GlobalObject(new Vector(n));

Vector v = (Vector) g.open("w");
v.add(new Integer(3));
v.release();

Figure 1: Accessing a shared object in Aleph.

cate either via shared objects or message passing. The de-
tails of the object-sharing mechanisms are encapsulated by
a DirectoryManager class to which all access requests
are passed. Included with the Toolkit are three implemen-
tations of this class: The first is a conventional home-based
protocol that invalidates outstanding copies of an object be-
fore modifications are permitted. Another implements the
“Arrow” protocol [2], in which the directory for a given ob-
ject contains a pointer to the processor thought to be hold-
ing the object. It may be that the processor pointed to has
itself passed the object to another processor, in which case
it stores a pointer to the new owner, etc. When an object
is retrieved, pointers on all processors along the path to the
object are reversed to reflect its new location. At most one
copy of an object exists at a time, and it can therefore be
modified at will. The third protocol is a cross between the
home-based and arrow protocols that was found to often
outperform both.

Some fine-grained DSM systems rely upon compiler-
generated access tests inserted ahead of references to
shared data [9, 10, 5]. If, at runtime, the shared data is
not found to be held locally, coherence mechanisms are in-
voked to obtain a copy of the data before the access is al-
lowed to proceed. Aleph was designed to be completely
portable, and therefore must operate without the support of
a custom compiler. But without a compiler (or other cus-
tom tools) to insert access tests, the system has no means
for detecting accesses to nonlocal data. Instead, Aleph
requires that programmers manually acquire and release
shared objects as shown in Figure 1, an approach similar
to that used in CRL [11]. The open routine is responsible
for obtaining a copy of the referenced object if necessary.

3 Extensions to Aleph

We have extended Aleph in three ways. First, Aleph was
modified to allow the use of multiple protocols simultane-
ously. Second, a data-collection facility was added to aid
our performance tuning efforts. It reports the average time
to satisfy coherence requests as well as information about
the number of times objects moved and why. Finally, a
multiple-writer protocol was implemented and added to the
three protocols in the Toolkit.

Supporting multiple protocols simultaneously re-
quires relatively minor modifications. Instead of instan-
tiating a single protocol at startup, the directory manager
instantiates all four. The GlobalObject constructor

shown in Figure 1 was then extended. It now takes a sec-
ond parameter specifying which protocol is used to manage
the newly-created global object. These changes result in a
trivial performance penalty at startup, as the additional pro-
tocols are initialized, but no additional overhead at runtime.
The data-collection mechanism increases runtime slightly,
when used, but care has been taken to minimize its impact.
Collected information is stored locally on each processor
as it is obtained, and only combined once a program has
completed. Thus, no communication between processors
is required during collection.

Our multiple-writer protocol reduces the problem of
false sharing by allowing writers to simultaneously mod-
ify copies of an object. (See Section 5.) Coherence is
restored once all writers have returned their copies. As
in TreadMarks [8] and other similar systems, overheads
are reduced by creating local duplicates of shared objects
(“twins”), and returning only the differences between mod-
ified objects and their twins.

4 Performance

All performance data was taken on a collection of identical
SunBlade 1000 workstations with 750MHz UltraSPARC-
III processors and 1 GB of RAM. No special networking
technologies were used: Communication was via the stan-
dard Java RMI and serialization libraries, and the worksta-
tions were connected by 100 Mbps Ethernet. All code was
run atop the Sun HotSpot 1.3.1 JVM.

Figure 2 illustrates the basic Aleph Toolkit perfor-
mance on our system. The runtimes and speedups for a set
of five benchmarks are shown. The Raytrace benchmark
is distributed with the Aleph Toolkit. Scene specification
data is read by all processors, each of which computes con-
tiguous columns of the 500 by 500 output pixel array. We
used an input scene consisting of 113 spheres of varying
sizes and properties. Mandlebrot computes the mandlebrot
set on a 1600 by 1600 pixel image. A static task decom-
position is used, with columns being distributed to proces-
sors in a round-robin fashion. Matrix is a standard ma-
trix multiplication benchmark. In our tests, it computes the
product of two 800 by 800 input matrices. EM3D models
the propagation of electromagnetic waves through objects
in three dimensions [12]. The algorithm essentially per-
forms SOR over a bipartite graph constructed at runtime.
It requires a significant amount of communication, as the
graph nodes are distributed across processors and need to
share values with their neighbors on each iteration. CRC
is a networking-inspired benchmark. The input consists of
a collection of 6400 packets, each containing 256 bytes of
data and a unique sequence number. Processors compute
32-bit CRC checksums over the packets, and update a cor-
responding status field in an output array.

While the speedups in Figure 2 fall short of ideal,
it should be remembered that these results were gener-
ated using the standard RMI mechanism over a commodity
100Mbps Ethernet network. As expected, the performance



0

60

120

180

240

1 2 4 8
Processors

T
im

e 
(S

ec
o

n
d

s)

Raytrace—Home
Mandelbrot—Home
Matrix—Home
EM3D—Home
CRC—Hybrid

0

1

2

3

4

5

6

7

8

1 2 3 4 5 6 7 8
Processors

S
p

ee
d

u
p

Raytrace—Home
Mandelbrot—Home
Matrix—Hybrid
EM3D—Home
CRC—Hybrid

Figure 2: Basic Aleph performance.

0

20

40

60

80

100

1 2 4 8
Processors

T
im

e 
(S

ec
o

n
d

s)

EM3D—Home

EM3D—Arrow

EM3D—Hybrid

EM3D—M/W

0.0

0.2

0.4

0.6

0.8

1.0

1 2 3 4 5 6 7 8
Processors

S
p

ee
d

u
p

EM3D—Home

EM3D—Arrow

EM3D—Hybrid

EM3D—M/W

Figure 3: Effect of protocol on EM3D.

0

20

40

60

80

100

120

1 2 4 8
Processors

T
im

e 
(S

ec
o

n
d

s)

CRC—Home
CRC—Arrow
CRC—Hybrid
CRC—M/W
CRC—Home+M/W

0

1

2

3

4

5

6

7

8

1 2 3 4 5 6 7 8
Processors

S
p

ee
d

u
p

CRC—Home
CRC—Arrow
CRC—Hybrid
CRC—M/W
CRC—Home+M/W

Figure 4: Effect of protocol on CRC.



for EM3D lags behind the other four benchmarks due to
increased communication requirements. Speedup for Ray-
trace and Matrix is limited by the volume of data that must
be transmitted across the network.

The benchmarks’ performance depends upon the co-
herence protocol managing their shared data. In preparing
the results for Figure 2, we ran series of tests measuring
benchmark performance atop each of the basic Aleph pro-
tocols. We chose to use the results from the protocol giving
the best performance on eight processors. Figures 3 and 4
show more detailed results for two of the benchmarks. In
addition to the three Aleph protocols, Home, Arrow, and
Hybrid, results are shown for our multiple-writer protocol.
The choice of protocol clearly has a substantial effect, es-
pecially as the number of processors increases.

Note that for EM3D, the best performance is obtained
when coherence is managed by the multiple-writer proto-
col. While it still scales poorly on our collection of work-
stations, performance on eight processors is dramatically
improved by the multiple-writer protocol. Instead of shar-
ing individual nodes from its graph data structure, EM3D
shares groups of nodes to amortize communication costs
over multiple nodes. This results in contention for node
groups during the update computation — exactly the situa-
tion in which a multiple-writer protocol would be expected
to improve performance.

Our multiple-writer protocol also improves the per-
formance of the CRC benchmark. The execution time
on eight processors drops by roughly 13% from that ob-
tained with Hybrid, leading to a pronounced increase in
speedup. This improvement is due to reduced contention
for the result array, which is being modified by proces-
sors as they discover undamaged packets in the input data.
The writes can be performed simultaneously and without
contention via the multiple-writer protocol. This bench-
mark also demonstrates the potential benefit of managing
portions of the shared data with different coherence proto-
cols. For the final data point in Figure 4, the CRC bench-
mark was configured such that the input data was managed
using the Home protocol, while the result array used the
multiple-writer protocol. The Home protocol allows the
source data to be efficiently read-shared, while results can
be written into the output matrix concurrently and with-
out contention with the multiple-writer protocol. The 5%
decrease in execution time on eight processors leads to an
improved speedup as well.

One might expect this multiple-protocol treatment to
increase the performance of Matrix as well, but its run time
is dominated by the time required to move relatively large
arrays across the network. There is also very little con-
tention for the result array by writers, since each processor
obtains the result just once and writes its entire contribution
to the array. Thus, using a multiple-writer protocol, alone
or paired with Home, does not result in a performance gain
for the Matrix benchmark.

5 Related Work

Ivy [13], the first software DSM system, took advantage of
virtual memory paging mechanisms to present the illusion
of a global address space shared across machines. Since the
unit of sharing is an operating-system page, unnecessary
contention for pages can result: Processors attempting to
access distinct portions of the same page must compete for
ownership. TreadMarks [8] showed that these false shar-
ing effects can be significantly reduced through a combina-
tion of relaxed consistency models [14] and multiple-writer
protocols like the one we have implemented for Aleph.
Munin [4] allowed multiple protocols to be used simulta-
neously and, as we have, demonstrated performance im-
provements as a result.

Another approach to reducing false sharing is to
enforce coherence on smaller units of memory. Fine-
grained DSM systems like Shasta [9] and Blizzard [10]
use compiler-inserted access tests to determine when co-
herence actions must be invoked. These systems can man-
age coherence on essentially arbitrarily-sized regions as a
result. CRL [11] relies upon annotations inserted by the
programmer to determine when shared data is being refer-
enced, as does Aleph. (Recent work has shown that fine-
grained systems are not necessarily superior to sophisti-
cated page-based systems, however [15].)

More closely related to our work are systems like
Midway [16] and Orca [17] that manage coherence at the
object level. This granularity is a good match for object-
oriented languages, and can produce better performance
since sharing occurs on meaningful units of data instead of
arbitrary regions. Neither of these systems supports Java,
however.

Related Java DSM systems include Jackal [5], Java-
Party [6], and Java/DSM [7]. Jackal supports coherence
at the object level, but relies on compiler-inserted access
tests to invoke coherence actions as necessary. The com-
piler optimizes away as many of these tests as possible,
then compiles directly to executable code (not Java byte-
code). Unlike our system, Jackal only supports a single
coherence scheme — a multiple-writer home-based pro-
tocol. JavaParty extends the language with the keyword
remote, which is used to declare globally-shared objects.
A custom compiler is thus required. A sophisticated run-
time system migrates objects to improve performance, but
multiple coherence schemes are not supported. Instead of
running separate Java virtual machines on each processor,
the Java/DSM system distributes a single JVM across a col-
lection of machines. The system is built atop TreadMarks,
and is therefore a page-based system at the lowest level.
(It also requires that Java/DSM users have access to Tread-
Marks — a commercial product.)

6 Summary

This paper describes a Java-based DSM system that allows
multiple coherence schemes to be used simultaneously, and



selected at the object level. It extends the Aleph Toolkit, a
distributed programming framework written in pure Java,
and is therefore completely portable and can leverage im-
mediately off of future improvements in the JDK. This is a
key distinction between our work and related Java systems,
as is the fact that our system allows multiple protocols to
be used simultaneously. To our knowledge, no other Java
DSM system can make the same claim. We have imple-
mented a multiple-writer protocol, and demonstrated that
it outperforms existing Aleph protocols for some applica-
tions. Performance results in Section 4 also show that us-
ing a combination of protocols can produce performance
superior to that resulting from the use of a single coher-
ence scheme. Future work includes implementing addi-
tional protocols and benchmarks, experimenting with more
efficient RMI schemes [18], and extending the system to
automatically select appropriate protocols at runtime.

Acknowledgements

The authors thank Susan Hert for her valuable feedback on
earlier drafts of this paper. This work was supported in part
by NSF MRI grant #0079466.

References

[1] Maurice Herlihy. The Aleph toolkit: Support for scal-
able distributed shared objects. In Proceedings of
the Workshop on Communication, Architecture, and
Applications for Network-based Parallel Computing,
January 1999.

[2] Maurice Herlihy and Michael P. Warres. A tale of
two directories: implementing distributed shared ob-
jects in Java. Concurrency: Practice and Experience,
12(7):555–572, 2000.

[3] S.J. Eggers and R.H. Katz. The effect of sharing on
the cache and bus performance of parallel programs.
In Proc. of the Third Int’l Conf. on Architectural Sup-
port for Programming Languages and Operating Sys-
tems (ASPLOS-III), pages 257–270, April 1989.

[4] J. K. Bennett, J. B. Carter, and W. Zwaenepoel.
Munin: Distributed Shared Memory Based on Type-
Specific Memory Coherence. In Proc. of the Second
ACM SIGPLAN Symp. on Principles and Practice of
Parallel Programming (PPOPP’90), pages 168–177,
March 1990.

[5] Ronald Veldema, Rutger F. H. Hofman, Raoul Bhoed-
jang, and Henri E. Bal. Runtime optimizations for
a java DSM implementation. In Proceedings of the
ACM Java Grande Conference, pages 153–162, 2001.

[6] Michael Philippsen and Matthias Zenger. JavaParty
— transparent remote objects in java. Concurrency:
Practice & Experience, 9(11):1225–1242, November
1997.

[7] Weimin Yu and Alan L. Cox. Java/DSM: A platform
for heterogeneous computing. Concurrency: Practice
& Experience, 9(11):1213–1224, 1997.

[8] C. Amza, A. L. Cox, S. Dwarkadas, P. Keleher, H. Lu,
R. Rajamony, W. Yu, and W. Zwaenepoel. Tread-
Marks: Shared Memory Computing on Networks of
Workstations. IEEE Computer, 29(2):18–28, Febru-
ary 1996.

[9] Daniel J. Scales, Kourosh Gharachorloo, and Chan-
dramohan A. Thekkath. Shasta: A low over-
head, software-only approach for supporting fine-
grain shared memory. In Proceedings of the Seventh
International Conference on Architectural Support
for Programming Languages and Operating Systems
(ASPLOS VII), pages 174–185, Cambridge, Mas-
sachusetts, 1996.

[10] Ioannis Schoinas, Babak Falsafi, Alvin R. Lebeck,
Steven K. Reinhardt, James R. Larus, and David A.
Wood. Fine-grain access control for distributed
shared memory. In Proceedings of the Sixth Interna-
tional Conference on Architectural Support for Pro-
gramming Languages and Operating Systems (ASP-
LOS VI), pages 297–307, October 1994.

[11] K. L. Johnson, M. F. Kaashoek, and D. A. Wal-
lach. CRL: High-performance all-software dis-
tributed shared memory. In Proceedings of the
15th ACM Symp. on Operating Systems Principles
(SOSP’95), pages 213–228, December 1995.

[12] David E. Culler, Andrea C. Arpaci-Dusseau,
Seth Copen Goldstein, Arvind Krishnamurthy,
Steven Lumetta, Thorsten von Eicken, and Kather-
ine A. Yelick. Parallel programming in split-c. In
Supercomputing, pages 262–273, 1993.

[13] K. Li and P. Hudak. Memory coherence in shared
virtual memory systems. ACM Transactions on Com-
puter Systems, 7(4):321–359, November 1989.

[14] S. V. Adve, A. L. Cox, S. Dwarkadas, R. Rajamony,
and W. Zwaenepoel. A Comparison of Entry Con-
sistency and Lazy Release Consistency Implemen-
tations. In Proceedings of the 2st IEEE Symp. on
High-Performance Computer Architecture (HPCA-2),
February 1996.

[15] B. Buck and P. Keleher. Locality and performance
of page- and object-based DSMs. In Proc. of the
First Merged Symp. IPPS/SPDP 1998), pages 687–
693, 1998.

[16] B. N. Bershad, M. J. Zekauskas, and W. A. Sawdon.
The Midway Distributed Shared Memory System. In
Proc. of the 38th IEEE Int’l Computer Conf. (COMP-
CON Spring’93), pages 528–537, February 1993.



[17] H.E. Bal, M.F. Kaashoek, and A.S. Tanenbaum. Orca:
A language for parallel programming of distributed
systems. IEEE Transactions on Software Engineer-
ing, pages 190–205, March 1992.

[18] Christian Nester, Michael Philippsen, and Bernhard
Haumacher. A more efficient RMI for java. In Pro-
ceedings of the ACM Java Grande Conference, June
1999.

[19] P. Keleher. The relative importance of concurrent
writers and weak consistency models. In Proc. of
the 16th Int’l Conf. on Distributed Computing Sys-
tems (ICDCS-16), pages 91–98, 1996.


