Implementing Paging in Xinu

Final Report

Thomas Gagne
University of Puget Sound
1500 N. Warner St.
Tacoma, Washington 98416
tgagne@pugetsound.edu

ABSTRACT

This report discusses on the design and implementation of virtual
memory management through paging in the Xinu operating system
done as part of the CS-440 Capstone course. It covers the theoretical
aspects of paging to provide background, then provides an in-depth
discussion on the specific details of various components needed to
successfully implement paging and virtual memory management.
The completed project’s source code can be found at https://github.
com/ThomasGagne/Xinu-x86-Paging.

ACM Reference format:

Thomas Gagne. 2017. Implementing Paging in Xinu. In Proceedings of Uni-
versity of Puget Sound, Tacoma, Washington USA, May 2017 (CS 440), 9 pages.
https://doi.org/

1 INTRODUCTION

In most modern computer systems, accessing and modifying mem-
ory values in RAM commonly encompasses much of work per-
formed by user programs. Hence, in environments where numerous
programs are running in parallel and are attempting to simulta-
neously access memory, the task of arbitrating memory between
programs becomes an incredibly important role of the operating
system. In particular, the operating system must provide a means
to dynamically allocate memory to programs in a way which guar-
antees safety, efficiency, and is convenient for programs to utilize.
To accomplish this, many operating systems designers choose to
use a scheme of virtual memory management, which provides all
three of these by creating a virtual space for each program to work
in and defining a translation between each program’s virtual space
to the actual physical space in real memory. The most common of
these schemes is paging, and it is because of the prevalence of this
scheme that I chose to implement it in the Xinu operating system
for my Capstone project.

There are two primary reasons why I chose to do this: The first
reason is that it afforded me an opportunity to explore the world
of operating systems development by allowing me to both design
the theoretical structures and mechanisms which the operating
system would use to provide support for paging, as well as actually
implement these structures and mechanisms and demonstrate their
correctness. This gave me valuable experience in operating systems
design and development on a deep and fundamental level which
would be difficult to match in an operating systems course. The
second reason was realized after the project had already begun, and

CS 440, May 2017, Tacoma, Washington USA
2017. ACM ISBN .
https://doi.org/

is that I plan to have this paper act as a useful and comprehensive
guide to those planning on implementing paging for operating
systems running on x86 architecture. Over the course of this project
I faced numerous struggles due to the sheer lack of resources on
this topic, and consequently set out with the goal that this paper
helps fill this void and will act as a significantly useful resource for
those taking on similar projects in the future.

Finally, as for why I chose to implement paging in the Xinu op-
erating system for the x86 architecture in 32-bit mode in particular,
I chose Xinu since I already had some experience in Xinu develop-
ment and since I knew that the operating system’s lack of complex
utilities such as virtual memory management, dynamic loading of
user programs, disk access, etc. would simplify my task. Since Xinu
runs on a variety of architectures, I additionally chose to imple-
ment paging for x86 in particular since this is the most widely-used
architecture in modern operating systems development and I knew
that choosing this would allow me access to the most resources
during this project.

2 BACKGROUND

In this section we shall first cover Xinu’s current memory manage-
ment model, then the notion of virtual memory management and
the benefits it provides over Xinu’s memory management model,
and finally we shall discuss what exactly paging is and how it
implements virtual memory.

Because Xinu was designed for use in embedded systems where
large amounts of memory were unlikely to be used and where
typically only a small collection of pre-defined programs will ever
be run, Xinu only provides a very elementary form of memory
management which does not scale well to large systems. By de-
fault, Xinu runs a form of memory management known as memory
segmentation. In this scheme, all the free memory in the system is
divided into a linked list of free segments, with memory initially
beginning as one large segment. When memory is requested by
programs, the operating system traverses this linked list to find
a segment large enough in size to meet the requirements of the
program. When such a segment is found, it is divided into two new
segments: one in-use segment with size equal to that needed by the
program (which is then allocated to the program), and a free seg-
ment comprising of the remaining memory in the original segment.
As memory is no longer needed by programs and is freed, those
in-use segments will become free segments and will be re-inserted
into the linked list of free segments. [1]

This form of memory management may work well when large
amounts of memory are not needed or when only a small number of
programs will be run simultaneously, but this system unfortunately


https://github.com/ThomasGagne/Xinu-x86-Paging
https://github.com/ThomasGagne/Xinu-x86-Paging
https://doi.org/
https://doi.org/

CS 440, May 2017, Tacoma, Washington USA

will not scale well to larger systems where these assumptions are
not true. In particular, one of the most significant problems in-
curred by memory segmentation is fragmentation, where after long
periods of various-sized segments being allocated and freed, the
remaining free memory in the system will be divided into numer-
ous non-contiguous segments throughout memory which are each
unusably small in size. Hence, even though the system as a whole
might have a large amount of total free memory, it will be divided
into so many different segments that the free memory becomes un-
usable. Another significant issue with memory segmentation is the
lack of memory protection between programs. In particular, Xinu
does not implement any sort of check that a program attempting to
modify a memory location has actually been allocated a segment
containing that memory location, allowing programs to easily over-
write the memory and code of other programs, including that of
the kernel itself. Finally, as memory becomes more heavily used
by programs, the task of traversing the linked list to identify a free
segment of suitable size can become an unreasonably slow process,
which can become especially frustrating when combined with frag-
mented memory due to potentially spending a large amount of time
searching for large enough segments which do not exist.

In response to these issues, the notions of virtual memory man-
agement and paging were developed. Virtual memory management
is a solution to provide memory protection by instead of allowing
programs to access memory arbitrarily and hoping that they only
access memory which was allocated to them, each program now
has its own separate virtual memory space which it can freely access
and manipulate. To guarantee safety, the operating system then
ensures that each programs virtual memory space is only visible
to the program it corresponds to, and the operating system then
provides a translation between the virtual addresses used by each
program and physical addresses in real memory. By maintaining
a scheme where no two virtual addresses map to the same physi-
cal addresses, the operating system can then guarantee safety by
translating each programs virtual addresses to real addresses as
it executes. Virtual memory management additionally solves the
issue of fragmentation, since adjacent virtual addresses do not need
to be mapped to adjacent real addresses, implying that the physical
location of free memory does not affect its usability. [2]

Virtual memory management itself is not a replacement for mem-
ory segmentation though, since we have not defined the specific
mechanism of translating virtual addresses to physical ones. To
develop such a mapping, we introduce the concept of paging, which
acts as an implementation of virtual memory management. On x86
architecture, paging works by dividing both the virtual memory
space of programs and the real memory space into 4KB-sized and
aligned chunks known as pages and frames respectively. The operat-
ing system then describes an address mapping for each program by
mapping each virtual page to a physical frame, effectively mapping
4KB of contiguous virtual addresses to 4KB of contiguous physical
addresses at a time. Address translation is then performed by the
memory management unit (MMU) during program execution by
identifying the virtual page containing the given virtual address and
finding the corresponding real address in the corresponding frame.
By doing this, paging implements virtual memory management,
which effectively provides memory protection between programs

Thomas Gagne

and solves the issue of fragmentation. This latter point is because
adjacent pages in virtual memory do not need to be mapped to
adjacent frames in real memory, and since we are now using static
page sizes rather than arbitrary-sized segments.

To provide a mechanism for address translation, paging on x86
architectures in 32-bit mode keeps a page directory and a collection
of page tables for each program. Each directory and table occupies
4KB of memory and is structured to contain 1024 4-byte entries. The
directories and tables are additionally required to be 4KB address
aligned, meaning each directory and table will fill exactly one frame
in memory. A page directory contains the base addresses of 1024
page tables, as well as some tracking info about the status of those
tables, which is stored in the rightmost 12 bits of the addresses,
since the addresses are required to be 4KB address aligned. Page
tables are structured near identically to this, with the exception
that the 1024 stored entries instead point to the address of a frame
in memory.

To perform address translation, the MMU uses a program’s page
directory and collection of page tables to identify the physical
address corresponding to a given virtual address. To do this, the
CR3 register in the CPU is initially loaded with the base address
of the page directory for the currently running program when
a context switch to that program is performed. When a virtual
address is sent to the CPU as part of an instruction, the MMU then
extracts a page directory index, page table index, and page offset from
the virtual address. The MMU then takes the page directory index
and identifies that particular entry in the page directory to identify
which page table the virtual address is referencing. The MMU then
does a similar lookup in that page table using the page table index to
identify the address of the frame the address is referencing. Finally,
the page offset is used to identify the exact physical address in the
frame the virtual address is mapped to. See Figure 1 for information
about how the page directories and tables are structured, and how
the MMU extracts the indices from a virtual address to perform an
address translation.! [3] [4]

Note that in x86 architecture, the operating system is not required
to perform any of the address translation itself. Instead, it is the
job of the operating system to provide memory management by
ensuring that the page directory and page tables of each program
are structured correctly.

3 IMPLEMENTATION

Giving that we now have an understanding of what exactly virtual
memory management and paging are and how the latter works in
an x86 32-bit environment, we can now cover the implementation
details of this project. In particular, we shall describe the necessary
tasks which must be performed by an operating system in order to
initialize and dynamically modify the paging structures for each
program. Note that this itself is an open problem and can be accom-
plished in a variety of ways. In this paper I am simply describing
the solutions I chose to use in implementing paging in Xinu, which
were chosen based upon their simplicity, ease of implementation,
and intuitiveness compared to other potential solutions. I also wish
to point out that in this section I will not order these components

1Used with permission from https://en.wikipedia.org/wiki/File:X86_Paging_4K .svg


https://en.wikipedia.org/wiki/File:X86_Paging_4K.svg

Implementing Paging in Xinu

Linear address:
[31 24123 s
10
page directory
32 bit PD
entry o
.
»-
+32*

e CR3

CS 440, May 2017, Tacoma, Washington USA

16,15 87 9
10 12
page table .
: i
: 2
e
32 bit PT E
entry @ ¥
.
- .
>

*) 32 bits aligned to a 4-KByte boundary

Figure 1: The format of virtual addresses and its relationship to the structure of page directories and page tables.

in terms of importance or significance but rather in terms of topo-
logical dependency, so that for each component I discuss I will have
already covered the components which it relies upon.

3.1 Frame Allocation

The problem of frame allocation is the first issue which must be
tackled when attempting to implement paging in an operating sys-
tem. Since in a paging scheme all of virtual and physical memory
is divided into 4KB-sized pages and frames and since the paging
structures work on a 4KB granularity, it is necessary to develop
some component which keeps track of the status of each 4KB frame
in memory and whether or not we have already allocated it to be
used by a program. The purpose of the frame allocator in partic-
ular is to use this tracking component to locate free frames when
requested and then mark them as in-use. [5] [6]

This tracking can be done in a wide variety of ways, each of
which have their own merit. In this project though, I have chosen
to use a frame bitmap to track the status of each frame, due to
its overall simplicity and small size. This latter point is especially
important, since in a system where we have all 4GB available (since
we have a 32-bit system) we will need to track the status of 1,048,576
frames. Consequently, to minimize the size of the data structure
which will track the status of each of these frames, I chose to use the
smallest amount of information possible to represent the availability
of each frame: a single bit indicating whether or not the frame is
available. In particular, upon initialization of the Xinu operating
system I take the number of available frames in memory, say n, and
designate n/8 bytes of memory to act as the bitmap. In this bitmap,
the ith bit then corresponds to the availability of the ith frame in
memory.

Using this scheme, to allocate a frame we simply need to look
over each byte in the bitmap until we find one which is not equal
to 0xF, then extract the bit number of the free bit and use that
byte number in the bitmap and the index of the bit to calculate

the address of the corresponding frame. We then set the bit to 1 to
mark the frame as in-use. Under this scheme, this can be performed
in O(n) worst-case-scenario time. However, we can often speed
up our ability to find a free frame by storing the index of the last
byte we allocated from and beginning our search from there. If a
large number of frame allocations and reclaims are performed in
arbitrary places during the system’s uptime the gains from this will
eventually become negligible, but in the majority of circumstances
this small addition can greatly increase frame allocation speeds,
particularly after a system is just started up. Another benefit of
this scheme is the O(1) time to mark the status of a particular
frame, which occurs when reclaiming frames and marking them as
available again.

3.2 Structure of Virtual Memory

Now that we have the ability to allocate frames in memory, we
can use our frame allocator to begin allocating and initializing the
paging structures of programs. However, we should not jump so
suddenly to this task since we first must develop a plan for how both
real memory and virtual memory will be structured. The structure
of real memory will actually be relatively simple. In Xinu’s simple
state we can divide memory into two primary logical regions: the
kernel image and data, and the remaining free memory which our
frame allocator will allocate frames from. As far as organizing
structures within these regions, we do not need to change anything
with the kernel image, and our frame allocator actually provides an
abstraction over the remaining free memory since once our frame
allocator has been completed we can simply rely on it to manage
the frames in that region.

The structure of virtual memory is not as simple though, and
there are many possibilities for how we can structure it to provide
the most convenience to running programs. In general, we can
assume there are two logical regions of memory which a program
must have access to: a region of memory which will contain the



CS 440, May 2017, Tacoma, Washington USA

program’s code, heap, and stack; and it must have the ability to call
system calls provided by the operating system. For the latter, this is
accomplished by making the kernel image visible to each running
program, meaning that we must designate a region of memory in
virtual space to contain the kernel image. Hence, the most intuitive
way to provide access to these two logical regions of memory is
to divide virtual memory into two major regions: kernel space and
user space. Kernel space will contain the kernel image and data
and should be unmodifiable by user programs. For this reason, it
will have a shared view between all processes. User space, on the
other hand, should be specific to each process and will contain the
process’ code, heap, and stack.

The simplest way to accomplish this is to designate a region
of addresses to act as kernel space, then for each process we map
the pages corresponding to that virtual region to the kernel image.
We now have a choice as to which region of virtual addresses will
correspond to kernel space though. One popular approach is to use
what is known as a higher-half kernel, where the highest virtual
addresses are used for kernel space, such as addresses 0xC0000000 -
OxFFFFFFFF. The benefits of doing this are that it is easier to set up
VM86 processes, it is simpler for compiled user programs to begin
at address 0x0, and if the operating system is 64-bit then 32-bit ap-
plications will be able to use the full 32-bit address space. However,
one difficulty of this is it requires the kernel to be compiled so that
once paging is enabled in the system, all address references in the
kernel thereafter must be aware that the kernel is now located in
the higher half of memory. The alternative (and simpler) approach
is to identity map the kernel in the lower half of memory, where
it is normally loaded to in real memory. This is the approach that
I chose in my implementation of paging in Xinu, primarily since
I was not interested in rewriting Xinu’s compile scripts so that
a higher-half kernel could be used. For simplicity, I chose to set
kernel space to be the region from 0x00000000 - 0x003FFFFF, and
I then identity-mapped everything in this region. This is because
these are all the addresses accessible by the first page table in a
processes’ paging structures, meaning that if we create a page table
which identity maps this region, then every process can share it
by simply having the first page directory entry point to that page
table, saving memory and complexity. Additionally, this allowed
the kernel more than enough room to grow in the future. All the
addresses from 0x00400000 onwards then belong to user space. [7]

3.3 Initialization of Paging Structures

Now that we have our frame allocator and have a plan on how to
organize our paging structures, we can begin the initialization of
a process’ page directory and page tables when it is being created.
Since a page directory and table both occupy exactly 4KB in memory,
we can easily use our frame allocator to allocate space for these
structures. Once paging is enabled though we will no longer be
able to directly modify these frames, since there is no page table
entry pointing to them. Hence, for the first thread in the system we
must initialize these structures manually before paging is enabled
while we can still directly modify real memory.

To do this, upon system initialization we will first allocate the
first thread’s page directory and initialize each of the page directory
entries to be empty. We then must allocate our page table to be

Thomas Gagne

used for identity mapping the kernel, which shall be known as the
kernel identity table, initialize each of the entries to facilitate identity
mapping of that region, and finally set the first page directory entry
to point to that page table. [8] At this point we are done with
the first thread’s paging structures and can safely enable paging,
at least in the case for Xinu. This is because the first thread in
Xinu, the null thread, does not perform any actual work other than
initializing various kernel structures and spawning the first thread
in the system, meaning that it does not require any use of the heap.
Furthermore, since in Xinu the stack of the null thread is included
in the kernel image, we can still use the null thread’s stack once
paging is enabled since it is in the identity mapped region of kernel
space.

This is certainly not the case for threads in general though, and
it actually requires a fair amount of work in order to spawn a
thread from another thread in general. This is because once paging
has been initialized there is no longer any way to directly access
memory, meaning that when we are initializing a new thread even
if we know the real address of the thread’s page directory and page
tables we cannot directly access them. This presents a challenge,
since our frame allocator is only capable of returning the physical
address of its allocated frames. To resolve this issue, I used a scheme
which for the purposes of this project I have dubbed readdressing.
Readdressing is a technique where when spawning a new thread we
temporarily redirect some of the page table entries of the currently
running thread to point to the frames which will contain the new
thread’s structures. In particular, we need to initialize the new
thread’s page directory and the page tables which will point to
the new thread’s heap and its stack. We additionally will need to
modify some memory values in the frames which will hold the
beginning of the process’ heap (if we plan to use a scheme such
as segmentation to provide per-process heap allocation, which we
will cover later) and will hold the top of the process’ stack so we
can initialize them.

To accomplish this I chose to take the first four pages of user
space, addresses 0x00400000 - 0x00403FFF, identify the page ta-
ble entries of the current thread determining which frames these
pages map to, then modify the locations of these pages to point
to the necessary positions. I chose these addresses since in my im-
plementation of paging in Xinu these addresses correspond to the
beginning of the heap for the process, and it would not be necessary
to access the heap while spawning a new process. I additionally
chose to work with four pages rather than one since I found it
simpler to map one page to the new thread’s page directory, one
page to any of the new thread’s page tables as was necessary, and
the remaining two pages were used to modify regions of user space,
namely initializing the heap and stack. I chose to have two pages
to modify regions of user space since during the stack initialization
there was the possibility that the initialized stack would contain
addresses in two different pages, and it was simpler to use two
pages at once rather than remap a single page multiple times. By
using this scheme I was able to successfully initialize the paging
and memory structures necessary to spawn a new thread properly
from a currently running thread.



Implementing Paging in Xinu

3.4 Modification of Paging Structures

Through the technique of readdressing we are now able to spawn
multiple threads which will each possess an initialized page direc-
tory, some page tables, and initialized memory structures for the
heap and stack. However, in paging we do not constantly have
every page directory and page table entry pointing to a specific
location; many pages in virtual space do not yet have a frame which
they are mapped to. Consequently, to prevent a process from incur-
ring page faults caused by attempting to access pages which have
not yet been mapped to frames, it is necessary to have the ability
to dynamically modify page directory and page table entries. In
particular, we need a system where when a process needs to access
a certain page, we can use our frame allocator to allocate a free
frame for it, then modify the appropriate page table entry so that
that certain page is mapped to that frame. However, since we have
paging enabled we can only modify specific real memory values if
we have a page mapped to those values. This means that we must
develop some special way to access the page directory and page
table entries of a process while that process is currently running.

Like many aspects of implementing paging, there are a variety of
solutions to this problem. For example, when a process needs access
to a page table we could perform a context switch to some kernel
thread which has pages pointing to all the currently allocated page
tables and page directories in the system. This is an expensive and
memory-intensive solution though, and leads to awkwardness as
to how we notify this kernel thread that we need a specific page
mapped.

A much better and much more common solution to this—and the
solution I chose for this problem—is to map one of the page directo-
ries entries to itself, commonly the last entry. This strategy might
seem confusing at first, but a bit of deeper insight into how page di-
rectories and page tables actually work can help us understand the
elegance of this solution. The first important point to note is that
there is actually hardly any distinction between page directories
and page tables; for all practical purposes, a page directory is itself
a page table. Furthermore, we point out that page directory entries
point to the base address of page tables in the same way that the
page table entries point to the base addresses of frames. Finally, we
remind the reader of the fact that page tables and page directories
are exactly 4KB in size—the size of a single frame.

Given these three points, it should be apparent that if the last
entry of a page directory points to itself, then we can use all the
addresses in that region—namely 0xFFC00000 - 0xFFFFFFFF—to
modify the entries of the current process’ page tables and page
directory. To see this, suppose that we pass address 0xFFC00000
to the CPU. The MMU will first extract the ten leftmost bits to
act as the page directory index, which in this case will notify the
MMU to look in the last entry of the page directory. Since the last
entry of the page directory points to its own address though and
since the page directory is functionally a page table, the MMU will
use the page directory itself as the page table during this address
translation. The MMU will then extract the middle ten bits, all
zeroes, as the page table index, which in our example will be the
first page table entry. Since the current page table is really the page
directory though and since the page directory’s first entry points to
the base address of the first page table, the MMU will then attempt

CS 440, May 2017, Tacoma, Washington USA

to modify an address inside the frame which contains the first page
table. In our case, this is the first address, which is the first page
table entry of the first page table. In this manner, it should now be
obvious that by mapping the final entry of the page directory to
itself we have given ourselves the ability to easily modify page table
entries. Furthermore, we can use the fact that the page directory
points to itself twice to modify page directory entries by using
the addresses in the range 0xFFFFF000 - OxFFFFFFFF, since under
this current scheme these addresses will correspond to the page
directory entries. [4]

With this simple trick, we have therefore given ourselves a mech-
anism to easily modify the page table and page directory entries
of the currently running process. This additionally gives us the
benefit that these addresses will modify the paging structures of the
current process regardless of which process is running, meaning
that we do not have to perform any sort of thread-specific lookups
when attempting to modify these structures. However, there is a
slight disadvantage to this technique in that we have somewhat
reduced the amount of virtual memory available to processes. This
is a negligible amount though, only 4MB, and the simplification to
our implementation of paging is rather significant, so as a whole
this is a more than worthwhile investment. Using this technique
is also an additional argument for why a higher-half kernel could
be preferred, since that would mean that these addresses could be
part of the kernel space rather than making an additional page
table space. Alternatively, I could also have chosen to place the
page table space located just after kernel space and combined them
together. For overall ease of implementation and extension though,
in my implementation I chose to have the kernel space positioned
from addresses 0x00000000 - 0x003FFFFF, the user space positioned
from addresses 0x00400000 - OxFFBFFFFF, and the page table space
positioned from addresses 0xFFC00000 - OxFFFFFFFF.

3.5 Abstracting Memory Management for
Processes

Now that we have the ability to initialize paging structures for
new processes, the ability to dynamically update them by using
the virtual addresses located in page table space, and have a mean-
ingfully structured virtual memory space, we have all the tools
necessary to allow programs to dynamically allocate memory as
necessary. However, we should certainly not consider it the job of
the programmer to have to deal with any of these aspects; after
all, it is the responsibility of the operating system to deal with
memory management for processes. Consequently we must de-
velop some mechanism of abstracting the process of dynamically
mapping pages to frames during the program’s lifetime. To do this,
we start by asking ourselves when exactly a process will need to
access new pages in its virtual memory space. When initializing
the process’ stack we gave it a set amount of stack space and paged
that entire region, so we do not need to deal with that. The only
other way a process should be able to access memory in user space
is by allocating memory on the heap, which in Xinu is done with
the memget() and memfree() system calls. 2 Hence, it is necessary
to rewrite these methods so that they take paging into account.

%In Xinu, these are the methods which underlie and perform the actual work of malloc()
and free().



CS 440, May 2017, Tacoma, Washington USA

We must additionally rewrite these utilities in general since Xinu’s
original code for these methods was for a memory segmentation
scheme of memory management.

To rewrite these system utilities, we must first ask ourselves how
exactly we want memory to be allocated during a malloc() call. In
particular, we recognize that we must have some form of memory
management specific to each process which has the ability to find
regions of free memory in the process’ user space large enough
to hold various data. Furthermore, we point out that while in user
space we cannot add on another layer of virtual memory manage-
ment; we must find some scheme of memory management which
works without virtual memory. For these reasons, it is chosen in
many operating systems to have memory allocated from a process’
user space by using memory segmentation, since this is a simple
way to provide memory management on a per-process basis. I addi-
tionally chose to use memory segmentation for handling user space
in my implementation of paging in Xinu since the memget() and
memfree() methods provided by Xinu already implement memory
segmentation, and it is a surprisingly easy task to modify the code to
act on a per-process basis once virtual memory is enabled. The rea-
son for this is because Xinu’s code for memory segmentation holds
all tracking data about free memory in those regions of memory
themselves rather than in kernel space, meaning that we can simply
move this tracking data to reside in user space to achieve a similar
effect. Then when memget() is called, the utility behaves identically
to as if virtual memory were not enabled but only one thread were
running, since each process has its own private view of its virtual
user space. Hence, it is a trivial task to modify Xinu’s memget()
and memfree() utilities to implement memory segmentation on a
per-process basis to provide dynamic memory allocation.

One observant question to ask at this point is whether or not
memory segmentation is necessarily a good scheme to choose for
per-process memory management, considering how all this work
is being done to implement paging so that we do not have to do
memory segmentation in the first place. In response to this, I first
point out that one of the primary reasons we chose to leave mem-
ory segmentation behind was because it did not provide memory
protection between processes. However, since in this circumstance
we are using memory segmentation on a per-process basis and
in each process’ independent user space, this is not an issue. The
other issue is whether or not we will incur the same issue of mem-
ory fragmentation we encountered with memory segmentation.
While this is certainly a possibility, it however is not as much of
an issue when we are using segmentation on a per-process basis.
The reason for this is because when using memory segmentation
in general, memory fragmentation was caused by many processes
running over the operating system’s lifetime and allocating varying
amounts of memory, which is not an unusual scenario. However, to
achieve the same effect when using per-process memory segmenta-
tion, it is necessary for this single process to allocate large amounts
of memory overall in many different allocations, which is a much
rarer occurrence. Additionally, when memory segmentation is used
in general and fragmentation occurs, the only solutions are to ei-
ther reorganize all of memory to resolve the issue or to reboot the
operating system. When a process incurs fragmentation in its own
user space though, it is a much less dramatic solution to simply kill

Thomas Gagne

the problematic process rather than be forced to restart the entire
operating system.

There still exists another issue with dynamic memory allocation
which we have not dealt with yet, however. This is that we are not
updating a process’ page tables when allocating memory so that
when a region of memory is allocated, the pages containing that
region are mapped to frames in real memory. To resolve this issue—
and to simplify many other aspects of implementing paging—I chose
to create a pageregion() utility which takes a region of addresses
and uses our frame allocator to map each page which contains
some of that region to a frame on disk. With this utility in place,
whenever memget() finds a region of memory which it will allocate
to the currently running process, we can first pass this region of
addresses to our pageregion() utility before returning the memory
to the process, thus resolving the issue. Note that this utility will
not page the same region multiple times; if a page has already been
mapped to a frame then the utility simply won’t change that page
mapping.

At this point, there remains one final concern of memory man-
agement which we have not yet covered: that of reclaiming memory
when a process frees memory or terminates. For the first point, that
of reclaiming frames when a process calls memfree(), in my im-
plementation I actually chose not to have the operating system
reclaim frames while a process was still running. The reason for
this was because I considered it both challenging and expensive
to have the operating system check when we free memory that
all the memory in that page is not currently in use, which would
be the only safe way to reclaim frames when memfree() is called.
Because of this, the only time memory is reclaimed by the operating
system is when a process is terminated. In particular, when a thread
terminates it will call the system utility xdone(), which cleans up
the thread’s data in the kernel. To allow the operating system to
reclaim a process’ allocated memory when it terminates, I modified
this utility so that during termination the utility would walk along
the process’ page tables and reclaim any page table entries which
were mapped to frames. Once this was done, the utility walks along
the page directory and reclaims the frames which held the page
tables, then finally reclaims the frame holding the page directory
itself. This process was greatly simplified by our earlier trick of
mapping the last entry of the page directory to itself to introduce a
page table space, since it allows us to simply scan over page table
space and reclaim any entry which is mapped to a frame.

3.6 Final Additions

With the completion of each of these components, we have finished
the major structural components of implementing paging. All that
remains to complete our system is to make a few final changes to
tie each of these components together. In particular, we need to
make sure that paging is initialized during system startup once the
null thread’s paging structures have been initialized. This is simply
done by setting the value of the leftmost bit in the CRO register in
the CPU to 1 to indicate that paging is now enabled. We additionally
need a mechanism to notify the CPU of the physical location of
the page directory of the currently running thread. This is done by
loading the CR3 register with the base address of the page directory,
so I created a short utility called loadCR3() which takes in a page



Implementing Paging in Xinu

directory address and loads it into the CR3 register. Note that since
neither of these registers are directly accessible from C code, it
is necessary to write these utilities in x86 assembly. Finally, we
must modify the structure of a thread struct in the kernel so that it
contains the base address for the thread’s page directory, and we
must update the resched() utility so that when rescheduling occurs,
the CR3 register is loaded with the page directory of the process
we are switching to. [4]

4 DISCUSSION

Through implementing these components, I was able to near com-
pletely implement paging in the Xinu operating system for x86
architecture in 32-bit mode. I say “near completely” because at
the time of writing this paper there still remains at least one out-
standing bug preventing the project from working properly. One
of the most frustrating aspects of implementing paging is that due
to the nature of virtual memory management, the entire system
will either work perfectly or will face catastrophic failure. While
the latter is unfortunately the current state of my implementation,
this is however not due to any major mistake made during imple-
mentation or structuring of the project but rather—I suspect—is a
small issue that is a consequence of a few erroneous lines of code
which are causing some particular structure to become initialized
wrong. These sorts of issues came up numerous times during the
development of this project and presented some of the most signifi-
cant challenges to overcome. In particular, these issues commonly
presented themselves in strange ways since the project required
me to first initialize the paging structures and then hope that I had
structured them correctly for when they would be used later. If I
made an error though, the issue could hide itself for a consider-
ably long time before finally making itself known, and could easily
present itself in curious ways that were not indicative of the actual
issue.

As an example of one of the most confounding issues I faced
during this project, at a point I found myself in a position where
after spawning the main thread from the null thread, if T attempted
to spawn a second thread from the main thread the operating sys-
tem would suddenly appear to restart and jump back to running its
initialization sequence again. In addition, this would occur immedi-
ately after reloading the CR3 register during the second process’
initialization, and would sometimes occur at different times de-
pending on when whether or not I had included debugging print
statements in the code. Although initially confusing, this problem
ended up being rather intuitive once I realized the underlying is-
sue. Understanding exactly what the issue was in the first place
though was not obvious at all given the problem’s nature. The un-
derlying cause for this was because while initializing the second
thread, rather than using exclusively readdressing to modify the
new thread’s paging structures I had decided it would be simpler
to just initialize the thread’s paging directory using readdressing,
then reload the CR3 register with that directory so that we could
use the entries in page table space to initialize the process’ memory
structures. This was problematic, however, in that when I reloaded
the CR3 register I would lose visibility of the execution stack in
the thread which was spawning the new process. This meant that
when the CPU attempted to exit the subroutine for reloading the

CS 440, May 2017, Tacoma, Washington USA

CR3 register, it would attempt to jump back to the address marked
on the execution stack, but having lost visibility of the stack it was
instead causing a page fault to occur. Furthermore, the loss of the
stack entirely meant that the subroutine for trap handling could not
be correctly called, causing the CPU to have no other option than
to simply clear all registers, which caused the operating system to
appear as though it were restarting. In addition, this sudden loss of
visibility of the stack is why the inclusion or exclusion of debugging
print statements would cause the CPU to incur errors in different
places. This was also the reason for why the error only came up
when spawning the second thread, since the null thread’s execution
stack was located in kernel space which was visible to all processes.

This is one such example of some of the confusing issues I ran
into during this project which made development so difficult at
times. Apart from actual implementation and debugging though,
another one of the most frustrating challenges I ran into during
this project (and part of the reason why I chose to write this paper)
was the overall lack of detailed information on the implementa-
tion of paging. In particular, I faced a general lack of information
on the specific implementation details of Xinu, as well as a lack
of information on how paging itself was actually implemented in
practice, despite there existing a large amount of material covering
the theoretical aspects of paging and virtual memory management.
In the end, I had to consequently learn many of these topics myself
through either scouring through various resources and trying to
piece together information or by simply having to come up with so-
lutions myself. For this reason, I wish to point out that even though
I set out to write this paper with the goal of providing a hopefully
informational and comprehensive guide on how to implement pag-
ing in an operating system, many of the topics I covered in the
paper were my own solutions to the problems I encountered and
may not necessarily be the most ideal or conventional solutions. In
addition, the topics I covered in this paper are specific to paging on
x86 architecture in 32-bit mode, and on different architectures the
task of implementing paging may require a considerably different
approach.

As a whole though, I would consider my implementation of
paging in Xinu to be rather successful—despite not necessarily
having a completely working product at the time of writing this
paper—and I found this project to be an exciting, informative, and
deep journey into the world of operating systems development. I
found one of the most rewarding things during this project was the
ability to essentially have a large workspace—that of real memory—
and being given the task of developing various structures in this
workspace to accomplish a well-defined goal. There is a certain
satisfaction to be obtained from working on an environment where
one does not have the ability to call upon an underlying operating
system for help and having to construct these structures entirely on
my own. For example, rather than being able to ask the operating
system to allocate memory to store a particular data structure I
needed and not having to worry about its actual location, I had to
examine the current state of my project as a whole and identify
regions of memory which I had not yet used and could designate to
store those data structures. In this regard, I found it very rewarding
to be able to construct a large and complex system in terms of
data structures in memory, rather than the more common task



CS 440, May 2017, Tacoma, Washington USA

in computer science of focusing on the computational aspects of
systems.

I also found this project to be a rewarding insight in how to
take the abstract and theoretical concepts of operating systems
components and actually implement those concepts. In particular, I
was surprised by the level of detail and complexity that was required
to implement such the relatively simple concept of virtual memory
management, and doing this project helped me develop a better
appreciation for the work that actually goes into operating systems
development once a theoretical model has been envisioned.

5 FURTHER EXTENSIONS TO THIS PROJECT

Due to only having so much time and resources available to me
over the course of this project, I unfortunately was only able to
complete what could probably be considered the simplest imple-
mentation of paging possible, despite all the work I put into it. This
is because virtual memory management and paging as a whole are
rather abstract concepts and there are numerous details and aspects
one could implement to further extend and improve memory man-
agement in an operating system. In this section I shall cover some
of these potential extensions and describe their purpose and utility.

One of the most useful advantages of paging is the ability to swap
out currently unused pages to a region of disk known as swap space
to allow currently running programs to utilize those frames, thus
giving the illusion that the computer possesses more memory than
it actually does. This is helped by the static page size, since we can
easily load pages back in from disk to any frame in memory, which is
a nontrivial task in segmentation memory due to non-regular sized
segments. Hence, implementing the ability for an operating system
to swap out pages to disk is an incredibly useful extension to paging,
so much that it was actually my original proposed project before I
realized that Xinu did not support paging for x86 architecture and
was forced to change my project to implement paging itself. The
problem of implementing page swapping itself is no simple task
though, and is further made difficult by the fact that it requires disk
formatting, something which Xinu does not support.

Another primary aspect of the implementation of paging which
I did not touch upon in this project is the role of the translation
lookaside buffer (TLB). The TLB is a piece of hardware in the MMU
which acts as a cache for the most recently accessed frames during
address translation, greatly speeding up the process of address
translation. The TLB itself must be programmed by the operating
system upon startup, however, and must be modified and flushed
during events such as rescheduling. However, because Xinu did not
have any support for TLB programming and because the emulation
software I used to run Xinu (QEMU) did not include a TLB either, I
was unable to include TLB programming as part of my project.

Another useful component of paging is the ability to allow mul-
tiple threads to share regions of memory. In particular, if a process
spawns multiple threads they need to have a shared view of the
process’ code and data, but their own private heaps and stacks. Pag-
ing provides a useful way for us to implement kernel-level threads
in this regard by taking a linux-like approach and making threads
more similar to processes by giving them their own page directories
and page tables, then allowing the threads to share various page
tables and frames. In particular, we could potentially divide the

Thomas Gagne

process’ user space during runtime into multiple regions which
could contain each thread’s heap and stack while still allowing
them to share the process’ code and data. To implement this, how-
ever, would require a large overhaul of how processes work in Xinu
and would require developing some interface to allow processes
to spawn kernel-level threads. For this reason, implementing this
would be considered a substantial project in itself and I obviously
chose not to pursue it during my own project.

Finally, the details of paging which I have discussed in this pa-
per only pertain to 32-bit systems, restricting us to a maximum
of 4GB of memory. However, the majority of consumer comput-
ers today have significantly more memory available to them and
run 64-bit architecture, meaning that we are limiting ourselves by
restricting ourselves to 32-bit systems in our implementation of
paging. Implementing paging for 64-bit systems simply adds on
yet another layer of difficulty in implementing paging though. In
a 32-bit system, we simply use a page directory and a page table.
In 64-bit systems though, 4 levels of address indirection are used,
starting with a PML4 table pointing to a page-directory-pointer
table, which in turn points to a page directory, which then points
to a page table, then finally pointing to physical frames. Paging on
x86-64 systems also requires the operating system to allow both
4KB pages as well as 2MB pages, and in some circumstances 1GB
pages. For these reasons, implementing paging on 64-bit machines
introduces an additional layer of difficulty and complexity for the
operating system, and so obviously I chose to restrict myself to
implementing paging in 32-bit mode for this project. [9]

6 CONCLUDING REMARKS

To summarize the main points covered in this paper, I wrote this
paper with the intention of both describing the work that I did as
part of this project, as well as with the intention that it would act
as a potential resource to those who attempt to implement paging
and find their efforts frustrated by the general lack of resources on
this topic in the same way that I did. To do this, I have first covered
the background of how virtual memory management and paging
work, then I described the components which I implemented to
allow Xinu to support paging. In particular, I discussed the role
and details of: a frame allocator; an abstraction of virtual memory
into the logical components of kernel, user, and page table space;
a kernel identity table to facilitate shared kernel space; mapping
an entry of the page directory to itself to facilitate modification of
page directory and page table entries; an abstraction of dynamic
memory allocation through the memget() and memfree() syscalls;
and several other small components necessary to connect each of
these larger structures.

Overall I found this project to be exceptionally enjoyable to work
on in a variety of ways. I found it rewarding to have the opportunity
to work on a project which was low-level and focused on creating
specific and complex structures in memory rather than focusing
on the computational aspects of a system. I additionally found it
rewarding to gain such a deep insight into the world of operating
systems development, and this project helped me gain a much better
understanding of how to take abstract operating systems concepts
and turn them into actually implementable components. I would
strongly recommend this sort of project to any student with a high



Implementing Paging in Xinu

level of self-motivation and good research skills who wishes to
learn more about operating systems development, since over the
course of this project I have learned much more about all aspects
of operating systems than I imagine I ever could in a traditional
operating systems course.

The completed project’s source code can be found at https://
github.com/ThomasGagne/Xinu-x86-Paging.

REFERENCES

[1] Douglas Comer. Operating System Design: The Xinu Approach. Second Edition.

CRC Press, Taylor & Francis Group, 2015. 156—170.

[2] Abraham Silberschatz, Peter Baer Galvin, Greg Gagne. Operating System Concepts.

Ninth Edition. John Wiley & Sons, Inc., 2013. 397—400.

[3] Abraham Silberschatz, Peter Baer Galvin, Greg Gagne. Operating System Concepts.

Ninth Edition. John Wiley & Sons, Inc., 2013. 386—387.
[4] http://wiki.osdev.org/Paging.

[5] Abraham Silberschatz, Peter Baer Galvin, Greg Gagne. Operating System Concepts.

Ninth Edition. John Wiley & Sons, Inc., 2013. 421—425.
] http://wiki.osdev.org/Page_Frame_Allocation.
1 http://wiki.osdev.org/Higher_Half Kernel.
] http://wiki.osdev.org/Identity_Paging.
]

Ninth Edition. John Wiley & Sons, Inc., 2013. 387.

Abraham Silberschatz, Peter Baer Galvin, Greg Gagne. Operating System Concepts.

CS 440, May 2017, Tacoma, Washington USA


https://github.com/ThomasGagne/Xinu-x86-Paging
https://github.com/ThomasGagne/Xinu-x86-Paging
http://wiki.osdev.org/Paging
http://wiki.osdev.org/Page_Frame_Allocation
http://wiki.osdev.org/Higher_Half_Kernel
http://wiki.osdev.org/Identity_Paging

	Abstract
	1 Introduction
	2 Background
	3 Implementation
	3.1 Frame Allocation
	3.2 Structure of Virtual Memory
	3.3 Initialization of Paging Structures
	3.4 Modification of Paging Structures
	3.5 Abstracting Memory Management for Processes
	3.6 Final Additions

	4 Discussion
	5 Further Extensions to this Project
	6 Concluding Remarks
	References

