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ABSTRACT

This paper describes and evaluates a servo control system designed
to use off-the-shelf brushless motors instead of traditional purpose-
built industrial servomotors. These motors are very well suited
for servo control while being much cheaper. The control system is
designed to be used with a wide variety of servo applications, and
drop in place of more traditional motor control systems.

This paper describes methodology for implementing brushless
servo control, specifically field-oriented control, servo control sys-
tems, and outlines the hardware and software design process for
developing a brushless servo controller with the STM32 micropro-
cessor series.

1 GLOSSARY OF TERMS

e Armature - The series of electromagnetic windings in a
motor.

o Stator - The stationary part of a motor. In brushless motors,
this contains the armature.

e Rotor - The rotating part of the motor. In a brushless motor,
this contains a ring of permanent magnets.

e Torque - A rotational force

e Commutation - The process by which a motor’s windings
are energized and de-energized.

e Open-Loop/Closed-Loop - closed-loop control loops, also
known as feedback loops, try to maintain an output condi-
tion by comparing it against the current actual condition.
Open-loops simply process a 1:1 input to an output.

o Back-EMF - The generated voltage created by magnets
rushing past the windings.

e AC/DC - Alternating-Current, Direct-Current respectively.
DC values are constant, while AC have a time-varying
waveform.

e PWM - Pulse-Width-Modulation. Output voltage switched
on and off, effectively modulating analog voltage levels in
a digital way.

e Duty-Cycle - Time spent on divided by total PWM period.
Duty cycle is effectively proportional to drive voltage.

2 INTRODUCTION

Industrial servomotors are fundamental to robotics. Every industrial
robot arm, pick and place machine, CNC machine, and electric car
traction control system use some sort of servo to move. Servo

motors use position and torque sensors to feed back into a closed-
loop control system to regulate the torque output of a motor to
move precisely and consistently.

Despite being essential for almost any computer controlled me-
chanical system, there are several problems with existing servo
motor systems. Primarily, the cost of commercially available servo
motor systems makes servo systems out of the reach of hobbyists,
pushing someone with a small budget to use more inefficient and
naive alternatives to servo control - specifically stepper motors or
pneumatic systems. Secondly, there is no general purpose servo
control system for every application. Despite having very similar
logic, there is a different servo control system for low speed position
control with gear reduction, velocity regulation, and yet another
for torque control.

Meanwhile, there has been an effort to make hobby DC motors
for remote controlled cars more and more power-dense. Traditional
brushed DC motors are limited in how much power they can dissi-
pate without burning up, so the hobby market has moved towards
using brushless motors instead. Because of this push, brushless
motors have come down in cost dramatically, and these incredi-
bly powerful motors can be picked up at a hobby shop for nearly
pocket change. Brushless motor controllers need to keep track of
rotor position so many of these cheap RC car motors have small
hall-effect sensors built into the armature, so unlike traditional
industrial servomotors, no extra mechanical systems are necessary
for servo control.

This project was created to use these cheap hobby brushless mo-
tors as industrial servomotors for robotics. Outside of this controller,
the primary robotics logic will send position, torque, and velocity
commands, and the brushless servo control system will generate
waveforms to regulate the respective motor characteristics.

3 BACKGROUND AND RELATED WORK

3.1 Existing Brushless Servo Alternatives

3.1.1  Stepper Motors. Stepper motors are typically used in hob-
byist robotics projects because of their ease of use. A stepper motor
is a simple open-loop motor that regulates rotor position mechani-
cally. Every time a coil is energized, the rotor moves a fixed number
of degrees and then continues to draw current to keep the rotor in
place. Because the motor is always drawing stall-current, it has to
be built to withstand the heat generated from continuously drawing
stall-current, and therefore is many times less power dense than
other DC motors. Furthermore, if anything mechanically stops the
rotor from spinning, the control logic can’t react, and the robotic
system will fail. The motors are very electrically and mechanically



noisy as the rotors accelerate and decelerate to and from a stop
hundreds of times over a single revolution.

3.1.2  Brushed DC Servos. Typical servo systems use Brushed
DC motors and use an optical encoder to measure the rotor posi-
tion. The electromagnets inside traditional brushed DC motors are
commutated by mechanical brushes. As voltage is applied to the
motor terminals, the rotor will spin automatically as the brushes
contact the rotor’s winding contacts. Position is regulated with
a closed loop using the optical encoder as feedback, and voltage
output to the brushes is ramped up and down. These motors are
not very good at regulating torque because of torque ripple from
the commutation process. Torque sensitive applications like camera
stabilization have only become accessible due to brushless servo
technology.

Cheap hobby DC servomotors (for use in model airplanes, etc.)
use a potentiometer in place of an optical encoder for price reasons,
and therefore can only move a maximum of a few degrees before
reaching a limit. These small plastic bricks are what most people
think of when mentioning the word "servo", but while these motors
use the same general technology, hobby DC servo systems are much
simpler than industrial servo systems.

3.2 Commercially Available Brushless Servo
Systems

Several brushless servos are on the market currently. Due to their
power density and consistent torque output, brushless servo sys-
tems have become very popular in industrial applications. These
servo systems however, are typically sold as a unit with a controller
and motor system, and are typically don’t drop below $1000 per mo-
tor. These systems usually don’t have torque regulation options, so
they wouldn’t be applicable to any servo application. They wouldn’t
be general-purpose enough to use on a delicate camera gimbal, for
example.

To the best of my knowledge, there is no industrial servo system
that uses off-the-shelf hobby motors without additional mechani-
cal components (usually optical encoders) attached. Using hobby
motors dramatically decreases the cost, because hobby brushless
motors are becoming increasingly available.

4 BRUSHLESS SERVO CONTROL
METHODOLOGY

Unlike traditional DC or asynchronous AC motors, brushless mo-
tors respond very differently depending on the input waveform.
This controller project aims to drive a brushless motor optimally to
enable applications that require very constant torque control.

4.1 General Motor Model

Figure 1 diagrams the electrical constituents at play when driving
power through a motor armature. Only R, has a fixed series resis-
tance, created by losses in the copper windings. All other impedance
is created by a) The coils in the armature which make a large in-
ductor L,, converting the armature current to and from magnetic
fields, effectively smoothing out time-varying current with large
voltage spikes when current changes. Also, b) the voltage source
e in parallel with the drive voltage source. This is known as the
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Figure 1: Electrical motor model

back-EMF, which is produced when the magnets in the rotor are
spinning past the armature windings. This voltage is in phase with
the drive voltage, and minimizes armature current I, at higher
RPMs.

4.2 Brushless Motors

Brushless motors, also known as Permanent-Magnet Synchronous
Motors (PMSM) are controlled by closed-loop logic systems that
monitor the rotational position of the motor and generate a syn-
chronous AC waveform whose period defines the rotor speed, and
whose shape affects the torque production over the course of its
revolution. In these motors, commutation logic is used in lieu of
carbon brushes and copper contacts. Use of solid state electronics
reduces friction, increases reliability, decreases motor cost, and
increases the winding current that the motor can withstand. Even
cheap hobby brushless motors can many times more power dense
than any other existing motor technology. The trade-off is more
complex and expensive controllers. In a servo system however, the
controllers are necessary regardless of motor design.

4.3 Trapezoidal Commutation

Traditional hobby brushless control systems generate a very simple
square-wave waveform emulating the waveform seen by the arma-
ture of a traditional DC brushed motor. This commutation technique
is known as trapezoidal (or six-step) commutation. Trapezoidal com-
mutation is the simplest brushless motor control strategy. At any
point in time, one motor phase is sourcing current, one is sinking
current, and one is disconnected. This leaves six possible states,
which are divided evenly based on the rotor position, so each state
is active for 60°(electrical). Using three hall-effect sensors to derive
the rotor position, the controller can be driven by a simple state
look-up table. This is shown in Table 1.

This commutation technique also makes sensorless rotor mea-
surement easier. When a phase is turned off, the controller can listen
to the the Back-EMF voltage generated from that phase. Because
the back-EMF is synchronous with the rotor, the controller can use
the back-EMF waveform to find the rotor position. Hobby brush-
less motors used for helicopter propellers don’t need torque at low
RPMs, so they can simply drive the motor like a stepper motor until
it generates enough rotor speed to pick up the back-EMF. Unlike
RC helicopter propellers however, servo control is very dependent
on low RPM torque so sensorless control wasn’t feasible for this
project.
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Table 1: Trapezoidal commutation lookup table

Electrical Angle Hall-Effect State Phase A Phase B Phase C
0°-60° {0,0,1} + - off
60°-120° {0.1,1} + off -
120°-180° {0,1,0} Off + -
180°-240° {1,1,0} - + off
240°-300° {1,0,0} - Off +
300°-360° {1.0,1} Off -

4.4 Field-Oriented Control

Because some servo applications are very sensitive to torque fluc-
tuations and efficiency, this project puts more care into producing
a waveform that minimizes heat and stabilizes torque production.
Traditional trapezoidal commutation can not regulate the torque
going into the motor, because the current is constantly changing.
Field-oriented control aims to a) regulate the current going through
the motor, and b) make sure that the motor is driven optimally.

If we think of the magnetic field generated by the armature as a
vector quantity centered between the three coils, trapezoidal com-
mutation would jump 60°every time it changes state. We can also
think of the rotor’s magnetic field as a vector quantity - the rotor’s
permanent magnets move around the stator once per revolution.
Ideally, the stator’s magnetic field should line up with the rotor’s
magnetic field to produce torque to the rotor. Because there is al-
ways a component of these vectors that don’t line up, some of the
current driven by a trapezoidal commutation controller goes into
heating up the motor instead of producing torque - the non-torque
producing component of armature current goes into weakening
the rotor’s magnetic field instead.

If the current production from the brushless controller were
sinusoidal and completely in-phase with the rotor’s back-EMF,
torque ripple is removed, overall torque is increased, while the total
armature current stays the same. Furthermore, the inductive voltage
spikes from pulsing coils in a square wave would be minimized,
decreasing heat dissipated by the power inverter. Field-oriented
control does exactly this - it uses current sensors on each of the
phases to drive fully sinusoidal phase current to the armature

Field oriented control takes advantage of all of the benefits of
brushless motors. Because it isolates the torque producing com-
ponent from the field-weakening component, it creates a fully in-
dependent torque and field controller. For very torque sensitive
applications, torque is completely controllable, even at extremely
low speeds.

4.4.1 D-QReference Frame. Fundamental to understanding field
oriented control is understanding the armature’s magnetic field
vector with respect to the rotor’s reference frame. The torque-
producing and field-weakening components of the armature current
are fixed with respect to the rotor. As the rotor spins, only current
in the torque-producing axis provides any torque on the rotor. In
practice, the torque-producing axis is 90°ahead of the magnetic field
vector from the rotor’s permanent magnets.

Through relatively simple trigonometry, the magnetic field vec-
tor can be transformed into the reference frame of the rotor. Figure 3

shows this transformation. In the rotor reference frame, called the
d-q reference frame, the torque-producing axis is known as the
quadrature (or q) axis. The field-weakening axis is known as the
direct (or d) axis.

In practice, this transformation is done in two steps. The three
phase current is mapped into X and Y components, and then rotated
to line up with the rotor. These two steps are known as the Park
transform and Clarke transform, respectively.

4.4.2  Synchronous Current Regulator. A subtlety of this descrip-
tion is the assertion of driving current current instead of driving
voltage. The motor model describes how a motor’s impedance varies
with time - the coils are inductive loads which resist changes to
current, and back-EMF is generated as the rotor’s magnets spin
past the stator. Current and voltage are proportional only with a
constant impedance, and a motor’s impedance can’t be predicted at
any given point in time. Regulating current requires a closed-loop
control system that senses current and varies output voltage.

In practice, we can only pulse full drive voltage on and off instead
of actually varying the voltage. This is known as PWM, or Pulse-
Width-Modulation. Inductive loads like motor windings, resist the
change of current and average out pulse-width-modulated output
and generate a relatively constant voltage proportional to the PWM
duty-cycle.

Instead of having three control loops that independently control
PWM of the three phases to regulate current, current is transformed
to and from the d-q reference frame and regulated from there. While
the math can be relatively computationally-intensive, the control
systems won'’t be regulating AC values, making the control system
much more responsive, even when the control loop is cycling slowly.

This is the fundamental part of field oriented control - known as
the synchronous current regulator, diagrammed in Figure 2. The
synchronous current regulator keeps track of the current running
through all three phases and varies the PWM to all three phases to
regulate a current vector as defined by the user.

4.5 PID Control Systems

Much of the science of controlling any physical system comes
down to closed-loop control systems that can carefully ramp an
output up and down to achieve an output sensor reading. In practice,
this usually ends up being a PID control loop. PID (acronym for
Proportional, Integral, Derivative) systems find the difference in a
measured sensor value and a target setpoint, called the error. The
output control variable from a PID controller is the sum of three
terms: the proportional term, the integral term, and the derivative
term.

The proportional term (P-term, or gain) simply multiplies the
error by a fixed gain. A proportional-only control system would
cause oscillation in a mechanical system. If a motor was set to a
certain setpoint, the P-term would ramp motor torque to move the
position to the setpoint, and would have to ramp it back as inertia
kept the rotor spinning past the setpoint.

The Integral term integrates the previous errors over time. If
there was a steady error too small for the proportional gain to
respond adequately, the integral term would get bigger and bigger,
providing the motor with the push it needs to make it to a setpoint.
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Figure 2: Block Diagram for the Synchronous Current Regulator

Figure 3: Transformed vectors from phases ABC to the d-q
reference frame

The derivative term pays attention to the change in error over
time. If the error begins to get smaller and smaller, the derivative
term is there to make sure the system doesn’t overshoot, and ramps
the output down as the measured value gets closer to the target.
Effectively, the D-term dampens the output ringing.

By adjusting the weights of the three terms, a servo system
can be tuned to jump to a position as quickly as possible without
moving past the target point[4].

In this project, PID control systems are used in two places: the
outer servo controller to vary torqueCommand to make the rotor
move to a desired position or velocity, and the control loops inside
of the synchronous current regulator to vary the output PWM
duty cycles to regulate I; and I; currents to torqueCommand and 0,
respectively.

5 IMPLEMENTATION

The final project for the Brushless Servo Driver is a single electrical
board with on-board CPU that handles all of the commutation

S

Figure 4: MOSFET schematic symbol

and servo control of a brushless motor. To use it, a robotics control
computer can pass it commands through simple electrical interfaces.
This section details the design process for creating a system to meet
this goal.

5.1 Hardware

All of the electronics for the Brushless Servo Controller were de-
signed and built from scratch apart from the microcontroller devel-
opment board from ST Microelectronics. Section 5.1 outlines the
electrical design as required by the software.

5.1.1 MOSFETs. Any motor control system will need to both
source and sink relatively high currents on every coil winding
without burning up. MOSFETs (Metal-Oxide Semiconductor Field-
Effect Transistors) were chosen to fit this requirement because
they are increasingly the closest thing to a electrically controlled
solid-state switch that that are available now. Every year, MOSFET
technology continues to expand, bringing both cost and power
capability. I chose an Infineon part number IRFB7537 due to its
incredibly low series resistance for the price. Two of these MOSFETs
were used in parallel to robustly handle the power requirements of
high power hobby motors. Field-Effect Transistors like MOSFETs,
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don’t have a saturation voltage like most transistors. Instead, when
fully on, they have constant series resistance, R . This is important
because under normal operation, they can conduct many amps of
current while only dissipating standard resistive power losses into
heat. Despite all of this, MOSFETs bring several other important
factors when programming a motor controller.

First of all, inside the MOSFET package, there exists a parallel
body diode. Figure 4 shows this in the MOSFET schematic symbol.
This diode is will always conduct current from source to drain if
the voltage of the source is higher than that of the drain. When
motor windings are energized and de-energized, induction creates
large reverse voltage spikes which get conducted through the body
diode and get converted to heat. The body diode has a much larger
conducting resistance than R, so much more of this current gets
converted to heat. These diode losses make the MOSFET much less
efficient, so minimizing inductive spikes with software is important
to avoid burning up the high current circuitry. The PID loops in
the synchronous current regulator capped the I; and I errors to a
maximum error value so that the voltage wouldn’t ramp too quickly
causing inductive spikes from the motor armature.

Secondly, MOSFETs include another important thermal loss fac-
tor. Field-Effect Transistors have a gate capacitance, so turning
fully-on takes time, as a function of how much current can be
driven to the gate. While partially on, the drain-source resistance
gets ramped to R exponentially, but dissipates much more drain-
source current during this time into heat. The percent of time spent
switching must be minimized to increase power capacity of the
inverter. At the same time, however, the windings must be switched
fast enough for the armature inductance to average out PWM to
avoid conducting full current even at low duty-cycles - the PWM
period must be carefully chosen to minimize switching losses while
still varying the armature voltage. The PWM period was empirically
chosen to be around 3khz.

Finally, MOSFETs are switched by the gate voltage with respect
to drain. Figure 5 shows the schematic for a single phase of the
MOSFET bridge. The top MOSFET is switched with reference to
its output phase rather than V-. To get around this, the gate driver
(IRS2184) charges a capacitor in a circuit known as a charge pump.
When this capacitor is discharged by the gate, it needs time to
recharge again before trying to drive the high-side MOSFET. If
the PWM duty cycle is too high, not enough time is given to the
gate driver to recharge its charge pump. The field-oriented control
PWM lookup tables had to be generated so that the duty cycles
would always be low enough so that the MOSFET would always be
fully on. This max duty cycle value was found empirically with an
oscilloscope, but would be different with different drive circuitry.

5.1.2  Power Inverter PCB. Field-oriented control brings along
several electrical requirements. In addition to simply switching on
and off the three motor phases: it needed circuitry to be able to listen
to the current running through at least two of the three phases.
Figure 5 shows the schematic of one of these phases, including
MOSFET bridge, gate driver, Hall-Effect current sensor, and voltage
sense lines. The inverter also needed to regulate power to the gate
drives, the hall effect current sensor, and the microcontroller.

I built and designed the power inverter board to be isolated from
the logic circuitry to iron out issues relating to power circuitry,
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Figure 5: Schematic of one of the phases of the power in-
verter

separately from issues arising from microcontroller requirements.
The printed circuit board was fabricated by oshpark.com. Now
that the prototype circuitry exists, a future circuit board would
incorporate both halves.

As seen from the microcontroller, for each phase there are two
logic control lines for the gate driver (IN, for high/low sides of the
bridge, and #SD, for enabling/disabling the bridge), and two 3.3v
scaled analog outputs, (V_SENSE and I_SENSE, respectively).

5.1.3  Mechanical testbed. For development and testing, I used
a 400 watt rated 7-pole hobby quadrotor motor (Turnigy Quanum
MT Series 4108) mechanically connected to a 1024 position absolute
optical encoder. I used the high-resolution optical encoder in place
of standard hobby brushless motor hall-effect sensors because field-
oriented control requires accurate interpolation between sensor
readings, so testing how accurately the state observer actually inter-
polated between low resolution sensor readings was very important
to the project.

5.1.4 STM32 Discovery. A typical hobby brushless motor can
spin at 50,000RPM. If that motor has 7 poles like the one used on the
mechanical testbed, it runs through a single electrical revolution
nearly 6000 times per second. Field-oriented control needs to trans-
form to and from a d-q reference frames and run a state observer at
this speed, with enough time-step resolution to spare to generate a
smooth waveform. For a reasonable output, the fast commutation
loop needs to run many hundreds of thousands of times per second.
This requires a powerful processor. Small 8-bit microcontrollers
like the ones found in hobby brushless motor controllers would not
be up to the task. Furthermore, it needs to have enough internal
hardware timers to run several high speed PWM outputs, talk to
the desktop computer, and run several independent PID loops. It
needed many analog to digital converters to read the sensor values.
To complicate everything, this project was designed to be expanded
so that multiple motors could be controlled by the same processor.
The STM32 series microcontrollers were chosen to balance cost and
the the quantity of hardware peripherals and processing power.

For prototyping, the STM32-Discovery Board developed by ST
Microelectronics was used. This development board uses an STM32-
F407 chip, based on an ARM Cortex M4 CPU core, with many
additional peripherals helpful for motor control. Although the de-
velopment board uses up many of the available peripherals for
on-board demos, including audio signal processors, accelerometers,
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Figure 6: High level system block diagram

etc. unrelated to the motor control project, there was enough usable
I/O to drive field-oriented control on one motor using the 10-bit
rotary encoder on the mechanical testbed.

5.2 STM32

The STM32 series microcontrollers are tremendously powerful in
spite of their price and energy requirements. They are based on an
ARM Cortex M4 CPU core, which is typically used in computing
systems that run an operating system. Choosing to write software
for these CPUs without an operating system turned out to be a
bold strategy for such a powerful chip. Much of the time spent in
development involved reading through the CPU datasheet to find
register addresses to talk to the CPU peripherals.

The firmware was written in C, using the ARM-GCC toolchain,
and built using ST Microelectronics StdPeriphLib peripheral library
for the STM32.

5.3 DPosition Sensor Readings

Unlike hall effect sensors around the rotor, the optical encoder used
in the mechanical testbed measures physical rotor position instead
of electrical angle, so the angle is divided by the number of poles of
the specific motor. With the testbed’s motor, this gives an electrical
resolution of 146 steps, compared to 6 steps with a hall effect sensor.
A state observer is necessary for interpolating these sensor readings
into something that the synchronous current regulator can work
with.

5.3.1 Gray Code. The rotary encoder used for testing doesn’t
output the shaft position in traditional binary. Instead, as the shaft
rotates, only one bit is changed at a time. Gray code is the most
common encoding scheme for similar systems. It is especially useful
for error correction because a misread would occur if some of the
bits change before others in traditional binary. The encoder used
in the test-bed used an unknown modified version of gray code, so
a lookup table was required to convert to computer readable shaft
position.
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5.3.2 Kalman Filter. A Kalman filter was initially chosen to
observe low resolution/noisy sensor readings, although it was
scrapped for a simpler solution. Kalman filters take in sensor data
with associated uncertainty, and then predict the state of the system
by the next time step. When the sensor data arrives, it performs a
weighted average between the new sensor data and the prediction
which is then fed back into the state observer by the next time step.
Measurements closer to the predicted value are given more weight.
Kalman filters are incredibly good at removing measurement noise
from a system, but they need a relatively accurate model of how the
state will change over time. In a motor control system, this includes
acceleration commands and an estimate of the motor’s moment of
inertia. This model was too computationally intensive to estimate
rotor position, especially when spinning at high speeds.

5.3.3 Alpha-Beta observer. An alpha beta filter is also very ef-
fective at smoothing out measurement noise, but it doesn’t need
a detailed model of the system. An alpha beta observer uses two
internal states to approximate the system state. One internal state
is derived by integrating the value of the second state. The output
of an alpha beta state observer uses a weighted average of this
estimated system state and the sensor values, which get plugged
back into the state observer for the next time step. Alpha Beta filters
can be almost as accurate as Kalman filters for systems that involve
mechanical position, because they can be easily estimated by in-
tegrating velocity. The Alpha Beta state observer I implemented
ended up being much less computationally intensive, simpler, and
indistinguishable from the Kalman filter output.

5.4 Tuning

Tuning separates a successful servo system from an unusable one.
A well-tuned control system reaches the target setpoint quickly
and without oscillation. For timing critical applications like CNC
Machines, position control must be consistent so that multiple ser-
vos move synchronously. For this project, lots of time was spent
empirically finding adequate values of P, I, and D terms of both
the outer PID loops and inner synchronous current regulator loops.
Also, finding adequate values of alpha and beta in the state ob-
server were necessary to make smooth, interpolated rotor position
estimation.

Also, because the sensors built into the a motor might not be
completely aligned with the stator, it is important to find a correct
TIMING constant to advance/retard the timing where all of the
current is torque-producing.

5.5 Optimization

5.5.1 Modified Synchronous Current Regulator. The inverse Park
and Clarke transform inside of the synchronous current regulator
needs to be inside of the fastest timing loop for waveform genera-
tion, although this process is very computationally intensive. For
computational efficiency, it can be replaced by a lookup table. For
this project, I implemented Shane Colton’s Modified Synchronous
Current Regulator[2]. In this solution, an inverse Park Transform is
replaced with a simple sine wave generator with a phase advance.
Because V;; generated by the D-Axis controller implies a phase shift
of the output waveform, we can simply phase shift a sine wave
to regulate d-q current. The forward Park and Clarke transform
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can take place in the slower timing loop with the inner current
regulator controllers, so that only a sine wave generator is inside
of the fast commutation loop. This can increase max motor speed
many times.

With an oscilloscope, I measured the fast control loop to be run-
ning on the order of 7500Khz. At this point, PWM period becomes
the limiting factor instead of processing power for motor speed.
This also leaves more than enough processing power to commutate
multiple different motors at the same time at very high speeds.

5.5.2 ADC DMA. The STM32 comes with many optimization
features that help move some operations away from the main CPU
loop to free processing power for more important logic[8]. This
motor driver needs to continuously listen to seven analog values.
The analog-to-digital converter (ADC) takes time to read analog
values which can use up lots of processing time. Instead, I utilize
the direct-memory-access register(DMA) of the chip. The DMA can
continuously drive the on-chip ADC and move the converted value
to seven distinct locations in memory - in the background. With
the DMA, I can read the most recent converted analog value from
any of the seven sensors, instantly.

5.5.3 Timers. Timing the control flow of the Brushless Servo
Controller was necessary for conserving processing power for
things that need it. Some parts of the Brushless Control System
need to be executed faster than others. Commutation, for exam-
ple needs to be able to always be updating the waveform at the
fastest speed possible, and the state observer needs to accurately
interpolate rotor position for the synchronous current regulator to
generate a waveform. The inner PID loops don’t need to be regulat-
ing I and I quite as quickly however, because I; and I are DC
values. The outer PID loop to control torque is much slower still,
because the physical mechanical system is much slower to respond.
Logic to control the serial input and output buffers are also running
in this slower timer because serial communication is not critical
for timing.

In firmware, the high speed commutation and state observer
logic is running at full CPU load in the main loop, and there are two
timers that control slower program flow. A 1Khz timer regulates
the inner PID loop, and a 244Hz timer keeps track of timing and
the outer servo loop.

5.6 Desktop App

Servo target velocity, position, and torque values can be sent over
the serial port to command the motor. Real time motor data is also
sent back as the motor is spinning to evaluate efficiency, monitor
position/velocity and current. A Java desktop app was written to
analyze this data and to test the servo. Figure 7 shows a screenshot
of the main window. The bottom right corner shows a scatter plot of
actual phase currents with respect to the electrical angle of the rotor.
With Field-oriented control, this should be a perfect sinusoid with
the minimum/maximum centered around 180°. This scatter plot is
helpful for fine-tuning timing as well as testing the optimality of
the drive current waveform. Total drive current is a signed sum of
I and Iy, where negative values indicate a reverse torque.
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Figure 7: Brushless Motor Control GUI

The GUI was written using JavaFX and uses the Java-Simple-
Serial-Connector(JSSC) for serial communication to the microcon-
troller. JSSC fires an event listener when bytes are received from the
serial port, where comma-separated values from the development
board are parsed and plotted on graphs.

5.7 External Interfaces

To send commands to the Brushless Servo Controller, a user can
choose one of two interfaces.

5.7.1 Stepper Interface. The Brushless Servo Controller is de-
signed to seamlessly replace stepper motor systems. Stepper motor
drivers typically use a two-wire digital interface - STEP and DIR.
The STEP line moves a fixed number of degrees every time the line
is pulled high. The DIR line defines the direction a step is taken.
The size of a step is defined in the STEP_DISTANCE constant. Unlike
actual stepper drivers, this interface can also be used to control
velocity or torque setpoints.

5.7.2  Serial Interface. A user can also talk to the controller using
standard 9600 baud UART serial. A servo command always starts
with a S character and ends with a newline. For example, to move
the servo to position 1000, a user would enter S1000. To select
between torque, position, or velocity mode, a user would enter ST,
SP, or SV, respectively.

The tx line will always be outputting real time motor data with a
series of comma-separated values in the form of: >RPM, POS, I;¢;,
ANGLE, I,, TARGET, I;, PWM_MAGNITUDE.

6 EVALUATION

The purpose of this project is to dramatically bring down the cost
and ease of use of existing industrial servo systems. Using off-the-
shelf hobby motors in place of purpose-built servo motors definitely
achieves this goal, but more work would be needed to make this
controller a viable alternative to commercial servo systems.



6.1 State Observer evaluation

To emulate the sensor readings from a hall-effect sensor built into
hobby motors, a state counter was incremented every 60 electrical
degrees. With some trial-and-error state observer adjustment, the
state observer estimation of rotor position was indistinguishable
from the full high-resolution measured rotor position, even during
acceleration. The driver will be able to accurately work with low-
resolution hall effect sensors, meaning that off the shelf hobby
motors will be able to be used as industrial servos.

6.2 Tuning evaluation

Without more tuning, this system would not be very helpful in
many timing-critical applications like CNC machines. The servo
loop currently doesn’t reach target position quickly and overshoots
its target by a few degrees. More tuning would be necessary to
make this project actually competitive with existing servo systems.
Compounding this problem, the power supplies I used for testing
could not make generate much torque on the motor, so the servo
PID weights had to be artificially low to avoid hitting the limits
of the power supply. Tuning with new power supplies would be
necessary for improving this system.

7 DISCUSSION

The brushless control methodology and servo logic used in this
project is nothing new. Controllers regulating torque output of
brushless motors use field-oriented control and the process is rela-
tively well documented. This project makes a general purpose servo
control system using these well-understood control methodologies
and brings them into the realm of the hobbyist by using cheaply
available hardware. Using hobby brushless motors is new for in-
dustrial servo control, but there is nothing stopping these motors
from performing precise servo control like more expensive servo
motors. This project bridges that gap. Although it still needs work
to bring it to the level of commercially available servo controllers,
it has potential to be very useful to the hobbyist community for its
cost and wide variety of applications.

8 FUTURE WORK

The brushless servo system I have developed has lots of room for
improvement. This system is not a competitive servo controller yet.
Apart from tuning the control loops, several architecture changes
would be required before this product could be useful to the public.

8.1 Hardware Improvements

The first fundamental change that needs to be developed to make
this project a finished product is to finalize the circuit board de-
velopment. Currently the STM32 development board is connected
with a prototyping board and ribbon cable to the power electronics.
A final circuit board layout would include all logic circuitry and
power electronics in the same layout. The only inputs would be
interfaces to the controller, and the only outputs would be motor
and power connections.

Secondly, combining multiple power inverters into the same PCB
with one logic system would dramatically decrease the cost to drive
multiple motors.
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8.2 Upgraded PC interface

The serial interface provides a convenient system for driving po-
sition, velocity, and torque, but it is not sensitive to timing. There
is no clock that keeps multiple servo systems synchronized. Many
industrial servo systems have proprietary interfaces that control
target position, velocity, and torque at specified times. While the
stepper interface correctly works with timing, it requires the ex-
ternal controller to be constantly commanding new setpoints. A
computer interface that keeps timing consistent would be a useful
improvement.

8.3 Auto-Tuning

Several commercially available servos have auto-tuning routines
that vibrate the rotor with white-noise current and observe how
the system responds. These systems can establish PID gains for
the servo loop and for the commutation loop, as well as filter out
resonant frequencies. A routine like this would save hours of trial-
and-error tuning for a specific mechanical system.

8.4 Desktop App changes

Currently the Desktop application for monitoring and controlling
servomotors is a minimal proof of concept. A final product would
allow you to change configuration parameters and tune the control
system for different mechanical systems.

The desktop app could also include programmable-logic-controller
(PLC) functionality. A user could set up simple timing sequences to
drive multiple motor controllers at once.

9 CONCLUSION

Although servo motors are the primary means of actuating indus-
trial robots, they are largely unavailable to the hobbyist. Industrial
Servo motors are typically sold in two parts - a controller and ded-
icated motor/sensor unit. This project aims to provide a general
purpose servo controller designed to use brushless motors designed
for hobby RC cars in place of the dedicated motor/sensor unit to
save costs. Despite being ridiculously cheap, these motors are in-
credibly power-dense, efficient, low on friction, and can have an
incredibly flat torque response. Most importantly, they are also
sold with small hall-effect position sensors cast into the armature
for commutation. These sensors can double as position sensors for
a servo motor. Unfortunately, as far as I know, no commercially
available servo driver can drive these motors.

This project aims to provide consistent, precise control of the
position, angular velocity, and torque of these motors for robotics
applications. It is designed to be modular and controllable to work
with a large variety of applications. While existing industrial CNC
servo controllers couldn’t drive the motors in auto-stabilizing cam-
era gimbals, which require precise torque control at incredibly low
angular velocities, this project utilizes the wide variety of hobby
motors available to enable use in applications like this as well.

In general, for hobby robotics applications (CNC machines, plot-
ters, etc.), stepper motors are used in place of servos. These motors
have many shortcomings when compared to servos, but can be
found for relatively cheap compared to an industrial servo system.
Motors designed for RC cars can be even cheaper. A brushless mo-
tor and general purpose servo driver like the one outlined in this
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project could make a much more powerful system for less money
than a stepper motor and controller, and could drop in place of an
existing stepper setup.

This project has been an incredible learning experience for me. In
spite of many frustrating hiccups, it has been extremely rewarding
and I believe I have come up with a system that is very useful for
low-cost industrial robotics.
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