
Relational Algebra Translation Application
iRat: h�ps://github.com/rvhirsch/RelationalAlgebraProject

Rachel Hirsch
University of Puget Sound

1500 N Warner St.
Tacoma, WA 98416

rhirsch@pugetsound.edu

Josh Wagner
University of Puget Sound

1500 N Warner St.
Tacoma, WA 98416

jwager@pugetsound.edu

ABSTRACT
Relational Algebra (RA) is a mathematical way to explain data-
base queries. �e purpose of this application is to create a way to
graphically view the output of Relational Algebra queries, given
a user-inpu�ed series of database tables. �is project required a
synthesis of Java String parsing, a Java-based GUI, and a number
of open-source projects, speci�cally an SQL-style in-application
database by H2 and Camdenre’s Equation Editor. �e purpose of
the this program is to provide a way to test relational algebra strings
against a real database without the use of ugly plain text forma�ing
or a markup language. Our program will potentially be used in
future database classes in at the University of Puget Sound. �is
paper will also cover basic use of SQL and Relational Algebra.

KEYWORDS
Relational Algebra (RA), Standard�ery Language (SQL), Graphical
User Interface (GUI), H2 Database, Relational Database Manage-
ment Systems (RDBMS)
ACM Reference format:
Rachel Hirsch and Josh Wagner. 2016. Relational Algebra Translation
Application. In Proceedings of Fall Capstone, 2017, Tacoma, WA USA, Fall
2017 (CSCI 440, 2017), 9 pages.
DOI: 10.475/123 4

1 INTRODUCTION
Relational Algebra (RA) is a mathematical language used by data-
base theorists to explain queries on database tables. However, these
queries can be hard for humans to understand and parse through
by hand. �is project aimed to create a application to translate RA
to Structured �ery Language (SQL) in order to run these queries
on a user-entered database to test their correctness.

Many languages used by database systems (e.g. SQL) are based
on Relational Algebra, so knowing RA can greatly aid in the un-
derstanding of both these languages. However, it can be di�cult
to learn RA due to the inability to see the e�ects of queries, unlike
programming in SQL.�e purpose of this RA to SQl translator is
to display results of RA queries in real-time.

�is project is useful for a few kinds of people and research. First
o� are database theorists who work with complex queries and need

Permission to make digital or hard copies of part or all of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for pro�t or commercial advantage and that copies bear this notice and the full citation
on the �rst page. Copyrights for third-party components of this work must be honored.
For all other uses, contact the owner/author(s).
CSCI 440, 2017, Tacoma, WA USA
© 2017 Copyright held by the owner/author(s). 123-4567-24-567/08/06. . .$15.00
DOI: 10.475/123 4

an easy way to see if what they are doing is correct. By inpu�ing a
sample database and running an RA query through our parser they
will be able to see if the output is what they expected. �is said,
long, complex equations on large datasets are not recommended
for this application as it works best on small, simple data.

�e largest user-base for this application - and the one we had
in mind while creating this project in the �rst place - is database
systems students. �ese are generally students who only know the
basics of how databases work and would bene�t greatly from being
able to test their RA equations. �us, this application will allow
these students to be�er both their knowledge of RA and of database
theory in general.

�is application is composed of two parts, which will be covered
in more detail later in this paper:

(1) �e back-end: a Relational Algebra parser, converting RA
equations to legal, runnable SQL queries.

(2) �e front-end: a graphical user interface (GUI) where the
user can input a test database and run RA queries.

2 PROJECT BACKGROUND
Information in a database is most o�en grouped in a series of tables
which can be queried using a database query language like SQL,
which will be explained later. Each table is composed of rows (a.k.a.
tuples) and columns. Each tuple is composed of a series of a�ributes
(i.e. columns). �e tables used in this section to explain RA and
SQL equations are below:

People:
ID Name Sex Age
0 Martha F 55
1 David M 35
2 Brad M 73
3 Kiona F 22

Eats:
ID Pizza Crust Loyal
0 Cheese �in True
1 Pepperoni �in False
2 Anchovy �ick False
3 Carnivore �in True

2.1 Relational Algebra
As mentioned in the previous section, Relational Algebra (RA) is
used as a mathematical way to explain database queries. �ere
are four main types of selections from a database as well as a
way to group rows by values in a certain column before running
aggregation functions [10]:

CSCI 440, 2017, Fall 2017, Tacoma, WA USA Rachel Hirsch and Josh Wagner

(1) � (tableName): “Select all”
�is command selects all rows from a given table.
Example: � (People)

ID Name Sex Age
0 Martha F 55
1 David M 35
2 Brad M 73
3 Kiona F 22

(2) �condit ion (tableName): “Select on condition”
�is command selects all rows from a given table which
match a certain condition or conditions.
Example: �a�e>40(People)

ID Name Sex Age
0 Martha F 55
2 Brad M 73

(3) �columnNames (tableName): “Project”
�is command selects all included columns from a given
table by column name.
Example: �name,a�e (People)

Name Age
Martha 55
David 35
Brad 73
Kiona 22

(4) �a��r e�ation (tableName): “Aggregate”
�is command selects columns contained in the given ag-
gregation function (i.e. average(), count(), max(), min(),
sum()) and runs those functions on the columns.
Example: �max (a�e)(People)

max(Age)
73

(5) �roup�a��r e�ation (tableName): “Group”:
�is command groups rows by a certain a�ribute, then
runs the included aggregation functions on each group.
Example: sex�sex,max (a�e)(People)

Sex max(Age)
F 55
M 73

It is also possible to group tables together in order to return more
interesting data upon running these selection queries. Some of the
most used joins are Cross Join and Natural Join. Cross Join pairs
all tuples in one table with all tuples in the table it is joined with.
Natural Join does the same, but only leaves the tuples for which
corresponding primary keys of tables match.

(1) table1
>

table2: “Cross Join”
Example: People

>
Eats

ID Name Sex Age Pizza Crust Loyal
0 Martha F 55 Cheese �in True
0 Martha F 55 Pepperoni �in False
0 Martha F 55 Anchovy �ick False
0 Martha F 55 Carnivore �in True
1 David M 35 Cheese �in True
1 David M 35 Pepperoni �in False
1 David M 35 Anchovy �ick False
1 David M 35 Carnivore �in True
2 Brad M 73 Carnivore �in True
2 Brad M 73 Pepperoni �in False
2 Brad M 73 Anchovy �ick False
2 Brad M 73 Carnivore �in True
3 Kiona F 22 Cheese �in True
3 Kiona F 22 Pepperoni �in False
3 Kiona F 22 Anchovy �ick False
3 Kiona F 22 Carnivore �in True

(2) table1 ./ table2: “Natural Join”
Example: People ./ Eats

ID Name Sex Age Pizza Crust Loyal
0 Martha F 55 Cheese �in True
1 David M 35 Pepperoni �in False
2 Brad M 73 Anchovy �ick False
3 Kiona F 22 Carnivore �in True

2.2 Structured�ery Language (SQL)
SQL is a database query language used similarly to Relational Al-
gebra, but is actually able to query a database. �e corresponding
SQL statements to the RA equations seen in the previous section
are as follows:

Selections [11]:

(1) � (tableName):
SELECT * FROM tableName;
Example: � (People)
SELECT * FROM People;

(2) �condit ion (tableName):
SELECT * FROM tableName WHERE condition == True;
Example: �a�e>30(People)
SELECT * FROM People WHERE age > 30;

(3) �columnNames (tableName):
SELECT columNames FROM tableName;
Example: �name,a�e (People)
SELECT name, age from People;

(4) �a��r e�ation (tableName):
SELECT aggregation FROM tableName;
Example: �max (a�e)(People)
SELECT max(age) FROM People;

(5) �roup�a��r e�ation (tableName)
Example: sex�sex,max (a�e)(People)
SELECT sex, max(age) FROM People GROUP BY sex;

Relational Algebra Translation Application CSCI 440, 2017, Fall 2017, Tacoma, WA USA

Joins [12]:
(1) table1

>
table2

Example: Person
>

Eats
Person CROSS JOIN Eats

(2) table1 ./ table2
Example: Person ./ Eats
Person NATURAL JOIN Eats

2.3 GUI
Our Graphical User Interface uses a combination of Java, JavaFX,
HTML, JavaScript, and CSS. �e JavaFX library is able to load web
pages, which is what we used to display the interactive equation
editor.

2.3.1 Languages, Libraries and Tools used.

(1) Java: �e good ol’ Object Orientated Java that we know
and love

(2) JavaFX Library: �e successor to and built on top of the
Java Swing library, made for creating GUIs in Java, o�ers a
myriad of functional and aesthetic upgrades. You can use
traditional Java code, or use a graphical editor to create
an FXML �le you can load or any combination of the two
(recommended). [7]

(3) HTML, CSS, & Javascript: You know what these are
(4) JavaFX Scene Builder: AGraphical editor for creating JavaFX

applications built with JavaFX. It lets you see what your
working on in a live editor so you don’t have to recom-
pile every time you want to see your changes and can be
integrated into your IDE of choice. Because it works by
generating an FXML form that your main class load, it’s
generally only used for static content. [8]

(5) Camdenre’s Equation Editor: makes up the framework be-
hind ours. While he wasn’t kind enough to leave us with
documentation, he �le structure and code designwasmetic-
ulously organized so that it was not too hard to �gure out
how it worked (to an extent). We wanted an simple yet
elegant, interactive equation editor and this �t the job per-
fectly. [2]

(6) H2 Database: is an SQL style database in Pure Java, it’s an
in-memory database, meaning it lives completely inside
our code and there is no way for user to interact with it
directly. H2 is only around 2MB and is super lightweight.
[4]

(7) JDBC (Java Database Connection) API: �e API that H2
and a number of other databases use to comunicate with
Java. Because multiple databases support it, there was
more than enough documentation and resources to learn
how to use it. [9]

3 PREVIOUS RA TO SQL RESEARCH
Relational Algebra to SQL translation has already been done using
syntactic and lexical parsing with JLex. In their paper on “Imple-
mentation of Relational Algebra Interpreter using another query
language”[6], Litoriya and Ranjan describe their system’s ability to
compile Relational Algebra into SQL, then run those queries on a
relational database system.

Before the translate of RA into SQL, the lexical parser checks for
syntax errors. If an error is found, a detailed error message about
the location of the error in the RA string is forwarded to the user.
�is is usually a message along the lines of “missing parenthesis at
position 7” or “no selection character found”. Once the syntax is
correct, the RA expression is converted into SQL and executed on
a relational database management system (RDBMS).

3.1 Related Applications
We found very few other programs that o�ered Relational Algebra
Calculator technology. We found one called relaX [1], but it is purely
an online application and appears to use an incredibly complicated
framework, so we were unable to use it as a reference.

�ere is also a helpful RA translation tool called “Relational
Algebra Translator”, but we did not have access to the source code,
and what li�le documentation we could �nd was in Spanish [13].
Again, this could not be used seeing as neither project member
speaks Spanish and internet translation so�ware is i�y.

�ere are a number of projects that convert from SQL to Rela-
tional Algebra[3], because it’s a good way to visualize the database
query statement, but given that SQL to RA goes backwards from
what we needed for this project, these tools did not help us much
either.

4 IMPLEMENTATION AND ARCHITECTURE
4.1 Parser
�e Relational Algebra to SQL parser is wri�en in pure Java using
available string spli�ing and equality functions. Relational Algebra
equations are fed into the parser in L

A
TEX format through the GUI

equation editor. �e parser works in three steps, which will be
explained below using the equation:

• “�a�e>18(Person ./ Eats)”
4.1.1 Clean Input String.

Clean the LATEX input string of special characters such as ./,[, and\
(see the entire list in Figure 11) and replace themwith corresponding
SQL phrases (“NATURAL JOIN”, “UNION”, and “INTERSECTION”,
respectively). �is requires a large number of simple �nd and
replace functions to be run before anything further can be done on
the RA string. �e only special case of �nd and replace is the full
outer join function which requires much more complex lexical
parsing [5].

• “\sigma {age>18}(Person NATURAL JOIN Eats)”
4.1.2 Split String.

Split the string by “{”, “(”, and “\” into a String array. �is separates
out each selection type (� , �, and �) as well as what each selection
is being operated on (i.e. the text inside the parentheses - the table
being selected on - or brackets - the columns or conditions being
used for selections).

• [“\sigma ”, “{age>18}”, “(Person NATURAL JOIN Eats)”]
4.1.3 Parse String.

Read through the split LATEX string array, if the item in the array
is “\sigma”, “\sigma ”, or “\Pi ” use the corresponding items in
the array (generally in the following or next two spots) to create
an SQL string representing the RA equation. If there is another
selection or join within these items, recurse on those selections

CSCI 440, 2017, Fall 2017, Tacoma, WA USA Rachel Hirsch and Josh Wagner

and parse them in the same way until the full equation has been
translated.

• SELECT * FROM Person NATURAL JOIN Eats WHERE
age>18

If the array item is “\gamma ”, it is clear that a grouping selection
is being done and some time is spent by the parser grabbing the
preceding column names. For instance:

• “lo�al�lo�al,count (lo�al)(Person)” becomes “SELECT loyal,
count(loyal) FROM Person GROUP BY loyal”

4.2 Database Connection
At the core of our application is a H2 database object surrounded
by a wrapper class. To interact with the H2 object you have the
use the JDBC API [9], which has the usual work�ow of: make a
connection to database) create query object) set query object
) execute query object) get resulting dataset) parse dataset.

We have a wrapper class that sets up all the necessary connec-
tions when it is �rst instantiated and it includes a large number
of functions for automating all the unnecessary code. When the
program is given a query, it simply calls the query function with
the SQL statement as a parameter. �e H2 wrapper has functions
for adding or removing tables, rows and columns, for compiling
data on a speci�c table or the entire database, and for importing
and exporting data. Any errors or exceptions get passed up to the
GUI class that contains the database object class. Abstracting the
entire database down to a single object was immensely helpful
for building the GUI. Everything is contained in DB.java, but two
additional classes are used for queries and information, DBInfo.java
holds info and stats about the database and queryResult.java parses
results and presents them in simple arrays for the GUI.

4.3 User-Application Interaction
We tried to make running queries and manipulated the database as
easy and hassle free as possible. You can break down the core of
our program into four main functions:

(1) �e ability to view and edit a database
(2) �e ability to input Relational Algebra Equation
(3) �e ability to run relational algebra queries query
(4) �e ability to display results from those queries

To address this we:
(1) Display the database in a table, with two ways to edit data:

a simple window, or a text �le
(2) O�er an interactive equation maker for creating relational

algebra equations without the need for ugly plain text
forma�ing or markup languages.

(3) �e GUI is able to take the equation the user wrote, pipe it
into the parser which then gets sent to the database where
data is manipulated and returned.

(4) Display a simple table for the results, with the ability to
see previous results.

In the end, the front end of our program is not very complex,
but that’s because it doesn’t need to be. Initially I wanted to put a
menu bar in the top of the application, but couldn’t come up with
enough front end functions to �ll it.

Development for the GUI started with the Java Swing library,
but then quickly traded out for the superior JavaFX library when
discovered the day a�er. Except for a couple, very confusing and
frustrating quirks, JavaFX looks and works be�er than Swing li-
brary. To help with development was the Scene Builder application.
�e Scene Builder o�ered a way to drag and drop GUI elements and
edit their a�ributes easily and assign action handlers to functions
(almost ridding the necessity to even write them), making it a lot
easier to create the layout of the program.

Most static content was made in the Scene Builder, while the
dynamic was in Java, because the GUI it outputs is contained in an
fxml �le, you can do dynamic content in fxml, but it is a whole lot
harder than just Java. Coding the GUI was pre�y straightforward,
you handle GUI elements like any other objects in Java. �e ma-
jor challenge was designing the layout and functionality. I know
how my program works because I wrote it myself, but what about
someone who’s never seen it before? You have to think about what
information is displayed where, and what the �ow of the program
is (do this �rst, then this), it should be intuitive and you shouldn’t
need a manual to learn how to use it. �e GUI went through �ve
major revisions before se�ling on it’s current layout.

Some interesting development challenges presented themselves
in this project. I have never developed a front end before and certain
code, while technically correct and working, caused some erratic
behaviour because it was in a GUI. For example, I had a method to
remove rows from the database that was querying and updating
the database a high number of times very quickly, which, for some
weird reason, made the result table lose and gain data seemingly
at random. It was huge challenge to hunt down the bug, partly
because of how interconnected everything in the GUI is, but also
because everything was technically correct and working, if we were
working with primitive data in an array instead of a GUI, everything
would be �ne. It was only when I came back and restructured the
method to access the database in a much more methodological way
did it work correctly.

4.4 Interactive Equation Editor
We could not �nd a way to create or render equations in Java the
way we wanted. We did not have the man-hours we needed to
develop our own editor and all the ones made in Java took multiple
seconds to render equations, making them useless for interactivity.
But we found out it is possible to render web content in JavaFX[7],
then we used Camdenre’s Equation Editor for our editor[2].

Camdenre’s original editor has a much di�erent front end and
has support for over 150mathematical symbols (we needed less than
30) and is built on top of the MathJax library. Adopting Camdenre’s
work was an interesting challenge, as he o�ered zero documenta-
tion and comments were sparse, but everything was meticulously
organized, even to a fault. �is made it easy to �gure out where
to look for functions, but hard to �gure out exactly what they do.
Luckily for us, besides needing to add several symbols of our own,
we didn’t need change any core functionality. Not to mention Cam-
denre’s GUI front end is made from simple HTML and CSS, so it
was relatively simple to develop our own custom front end.

Relational Algebra Translation Application CSCI 440, 2017, Fall 2017, Tacoma, WA USA

4.5 Equation Editor Usage
A quick run through of the usage of the program, see the appendix
for the pictures. Figure 1 is the second newest revision and shows
the general layout of the program. On the le� you have a table
that displays all the data from the database, below that are bu�ons
for loading and saving databases. In the middle you have a table
that displays the results and on the right is where you input your
equations, where you can simply hit the execute bu�on to the see
the results. Below that is a way to get the LaTeX source of the
equation if you want to copy it somewhere.

Figure 1: Older Revision

If you press the Edit Database bu�on, it will you the window you
see in Figure 2, where you can make manually edits to the database.
Figure 5 (appendix) is for removing tables, Figure 3 is for adding
data, Figure 6 (appendix) is for removing tables and Figure 4 is for
adding tables.

Figure 2: Database Editing Window

Figure 3: Adding Rows of Data

Figure 4: Adding Tables

4.6 General Architecture
�e general architecture of our program is not that complex, a look
into our source folder shows

(1) Gui.java - �e Main Class, loads the FXML form and asso-
ciates the guiHandler with it, only about 30 lines long

(2) GuiHandler.java -�e Brains of the program, the source of
all front end functionality, what links everything together

(3) DB.java - Contains and automates all the functionality for
the database

(4) DBInfo.java - Contains information and methods to parse
that information about the database as a whole

(5) Parser3.java - Translates a LaTeX String to a SQL String.
(6) Police.java - Contains a whole bunch of functions for test-

ing strings for numbers, le�ers, spaces, etc for catching
user input errors.

CSCI 440, 2017, Fall 2017, Tacoma, WA USA Rachel Hirsch and Josh Wagner

(7) RAGUI.FXML - �e form generated by the JavaFX SceneB-
uilder, holds the majority of the static content

(8) Renames.java -�eoretically working but untested back-
end to add table renaming functionality for relational al-
gebra. We didn’t have the time to fully implement it and
develop a front end for it, but the backend works for simple
queries and it was too much work to delete.

(9) �eryResult.java - Contains the results from a query to
the database in simple arrays for easy use for the GUI

(10) Webstu� (folder) - Contains all the web content for our
equation editor, explaining the architecture and how the
editor works is it’s own, much longer paper.

5 EVALUATION, RESULTS, AND ANALYSIS
5.1 Application Development Process
Prior to this project, this group only had elementary knowledge of
the inner workings of SQL, Javascript, HTML, and CSS. We were
chosen for this project as we had both taken Database Systems and
knew the relationship between Relational Algebra and SQLite.

For the �rst month of the project, on Professor David Chiu’s
suggestion, we a�empted to recreate an SQL style database in Java
using a number of objects (i.e. A�ributes, Rows, and Tables). We
were well on our way to ge�ing SQL-type commands, like Joins
and Selects, working with this database, but it quickly became
unnecessarily complex. It was also focused entirely on the database
end rather than the ability to parse Relational Algebra into SQL. We
eventually found the H2 database, which was a SQL-esque database
in pure Java, but wri�en by professionals who know what they
were doing. Fortunately for us, it works beautifully. [4]

Whenwewere taskedwithmaking an interactive equation editor
for our RA parser, we had no luck �nding open-source equation
editing code in Java. However, a GitHub user named Camdenre
created a brilliant euation editor for web pages that we could adapt
for our own purposes.[2]�is shaved weeks, if not months, of work
o� our project.

From there it was pre�y much smooth sailing, Rachel continued
to �esh out the parser, and Josh kept designing and adding func-
tionality to the front end. �ere wasn’t anything too remarkable
about the development process for the GUI, except that I learned
you have to save all the aesthetics for the very end. If you spend
a couple hours making everything look pre�y, but then have to
change the layout for some reason, you would loose all those hours
of work, so this meant that the GUI looked pre�y ugly until near
the end.

Luckily for us we didn’t face too many errors with github. For
the most part we were always working on separate �les, and when
we crossed over to each other’s �les, it was when we met up and
could coordinate to avoid github errors. At the worst, all we had to
do was delete a �le and pull again.

It was also relatively simple to package everything together, at
�rst we had a li�le trouble, but we discovered it was because all of
our �le paths absolute and not relative to the project, a�er �xing
that it was just a simple wizard in Intellij to make the Jar �le.

5.2 Accuracy Evaluation - Test Cases
We like how our program turned out. All the simple to moderate
equations (akin to the ones used as examples and the equations
in the appendix) we tested worked, but we cannot guarantee that
more complex equations will work. We think the program is most
suited for when your �rst start learning Relational Algebra, and for
doing demos for the class.

We are very happy with how the GUI turned out. If we knew
what we know now at the very start of this project, we probably
would have wri�en some parts of the application di�erently. Addi-
tionally the program is relatively stable, we covered every exception
we could �nd, and even then, JavaFX is very good at recovering
from them. A large amount of safety functions were made that
check user input before hand to, so nothing can get too out of hand.

We also did a lot of work creating JUnit tests to testing the parser
(see Figure 12). �us far, all our tests are working, but this still
leaves room for the the possibility of creating an RA equation so
complex that the parser gets lost amid the parentheses.

Our program is relatively slow, this isn’t a problem for an ap-
plication of this scale, but if we were to scale this up, the loading
times would de�nitely su�er. �ere are de�nitely a good number of
areas for optimization, however with our timeframe it was di�cult
to go back to improve previous work.

6 DISCUSSION
6.1 Project Signi�cance
Our project is relatively unique. From our searches, we could only
�nd one other program that wasn’t web based, and it was in Spanish
and the source code wasn’t available. A web based approach would
be di�erent in every aspect than a standalone approach, so there
is some signi�cance there. Parts of our project, like the GUI and
the Parser can be good references for future projects because it
encompasses a wide range of design and programming practices.

6.2 Project Di�culties
Only having two people working on this project produced another
series of complexities, but was also helpful at times. Because we had
so few project members, we were only able to get a small amount
of work done, as compared to larger project groups.

However, the small group made scheduling and work�ow much
simpler. It was usually easy to set up times for the group to meet
up and work on our project as there was generally large amounts
of open time overlap between the two of us. With more people,
scheduling can be tedious and di�cult.

Furthermore, we were able to perfectly break up the project into
two halves that each group member was able to undertake. One
worked primarily on the RA to SQL parser while the other worked
almost entirely on the GUI. Because of this we had very few issues
with keeping code separate, leading to only one or two GitHub
push-related issues all throughout this project. �is rarely happens
with a larger group.

7 FUTUREWORK
Some ways this program can be made be�er, or generally added to,
are:

Relational Algebra Translation Application CSCI 440, 2017, Fall 2017, Tacoma, WA USA

(1) Functionality to rename tables
(2) Editing Database from table instead of window
(3) Additional Error Handling
(4) SableCC Support

�is would require massive rewrites of the parser
(5) Live syntax help/spellcheck for inpu�ed equations
(6) Add more datatypes that can be used in database tables
(7) Smoother window resizing
(8) Full documentation of application use

8 CONCLUSION
�is application does everything we set out to do, though it has
some limitations. As such it is recommended to be used by intro-
ductory database systems students to explain the general selections
and joins used in Relational Algebra. �is hope is this app will give
these students a visual representation of mathematical database
query equations.

�is application is not recommended for use by database the-
orists, or anyone working with massive datasets. It does its best
work on small tables, like in-class example data.

9 ACKNOWLEDGEMENTS
We would like to thank Professor David Chiu for providing us with
this project and teaching us what we needed to know about RA
and SQL in order to �nish it. We also want to thank Professor Brad
Richards for keeping us on track and mostly stuck to our timeline
all semester. And �nally, we want to send a shout-out to everyone
on GitHub and Stack Over�ow, especially those who allowed us to
use their open-source code, for being incredibly helpful while we
were debugging our application.

A GUI

Figure 5: Scene Builder

Figure 6: Removing Rows of Data

Figure 7: Removing a Table

B WHITEBOARD

Figure 8: Sample Equation for Testing

CSCI 440, 2017, Fall 2017, Tacoma, WA USA Rachel Hirsch and Josh Wagner

Figure 9: Another Equation Translated by Hand

Figure 10: A�ird Hand-Translated Equation

C CODE
Figure 11: All latex commands dealt with by the parser:

p r i v a t e f i n a l s t a t i c S t r i n g PI = ”\\ P i ” ;
p r i v a t e f i n a l s t a t i c S t r i n g SIGMA1 = ”\\ sigma ” ;
p r i v a t e f i n a l s t a t i c S t r i n g SIGMA2 = ”\\ s igma ” ;
p r i v a t e f i n a l s t a t i c S t r i n g AGGR = ”\\gamma ” ;
p r i v a t e f i n a l s t a t i c S t r i n g NATJOIN = ”\\ bowt ie ” ;
p r i v a t e f i n a l s t a t i c S t r i n g CROSSJOIN = ”\\ t imes ” ;
p r i v a t e f i n a l s t a t i c S t r i n g UNION = ”\\ cup ” ;
p r i v a t e f i n a l s t a t i c S t r i n g INTERSECT = ”\\ cap ” ;
p r i v a t e f i n a l s t a t i c S t r i n g AND1 = ”\\ vee ” ;
p r i v a t e f i n a l s t a t i c S t r i n g AND2 = ”\\ l and ” ;
p r i v a t e f i n a l s t a t i c S t r i n g OR1 = ”\\wedge ” ;
p r i v a t e f i n a l s t a t i c S t r i n g OR2 = ”\\ l o r ” ;
p r i v a t e f i n a l s t a t i c S t r i n g EXCEPT = ” � ” ;
p r i v a t e f i n a l s t a t i c S t r i n g LOJ = ”\\ l o j ” ;
p r i v a t e f i n a l s t a t i c S t r i n g ROJ = ”\\ r o j ” ;
p r i v a t e f i n a l s t a t i c S t r i n g FOJ = ”\\ f o j ” ;
p r i v a t e f i n a l s t a t i c S t r i n g GEQ = ”\\ geq ” ;
p r i v a t e f i n a l s t a t i c S t r i n g LEQ = ”\\ l e q ” ;
p r i v a t e f i n a l s t a t i c S t r i n g MAX = ”\\max ” ;
p r i v a t e f i n a l s t a t i c S t r i n g MIN = ”\\min ” ;
p r i v a t e f i n a l s t a t i c S t r i n g AVG = ”\\ avg ” ;

p r i v a t e f i n a l s t a t i c S t r i n g SUM = ”\\ sum ” ;
p r i v a t e f i n a l s t a t i c S t r i n g COUNT = ”\\ count ” ;

Figure 12: Example JUnit Test

pu b l i c vo id t e s t C a s e 1 () throws Excep t i on {
S t r i n g samp le Inpu t1 = ”\\ P i {name } (Person) ” ;
p = new Pa r s e r 3 (sample Input1 , d) ;

S t r i n g t e s t = p . runTes t (sample Input1 , 1 , p) ;
S t r i n g answer = ” SELECT name FROM Person ” ;

a s s e r t E q u a l s (t e s t , answer) ;
}

Figure 13: Example GUI Objects

f i n a l doub le INV = 2 . 5 ;

p r i v a t e DB db ;
p r i v a t e DBInfo db In f o ;
p r i v a t e que r yRe su l t curQR ;

p r i v a t e Ob s e r v a b l e L i s t <S t r i ng > addTableColumnOptions ;
p r i v a t e Ar r ayL i s t <S t r i ng > t ab leNameOpt ions ;
p r i v a t e Ob s e r v a b l e L i s t <S t r i ng > tab leNameOptionsFX ;

/ / f o r the e d i t Database Menu
p r i v a t e S t age ed i tDBS tage ;
p r i v a t e Scene ed i tDBScene ;
p r i v a t e TabPane editDBTabPane ;

p r i v a t e Tab editDBAddTableTab ;
p r i v a t e Tab editDBAddRowTab ;
p r i v a t e Tab ed i tDBClea rTab l eTab ;
p r i v a t e Tab editDBClearRowTab ;

REFERENCES
[1] Johannes Kessler BSc. RelaX - relational algebra calculator. Databases and

Information Systems Group at the Institute of Computer Science at the University
of Innsbruck. h�p://dbis-uibk.github.io/relax/

[2] Camdenre. 2015. Equation Editor. h�ps://github.com/camdenre/equation-editor
[3] S. Ceri and G. Go�lob. 1985. Translating SQL Into Relational Algebra: Optimiza-

tion, Semantics, and Equivalence of SQL �eries. IEEE Transactions on So�ware
Engineering SE-11 (April 1985), 324–345. Issue 4. DOI:h�p://dx.doi.org/10.1109/
TSE.1985.232223

[4] H2. 2017. H2 Database Engine. h�p://www.h2database.com/html/main.html
[5] Lasse V. Karlsen. 2009. (January 2009). h�p://stackover�ow.com/questions/

406294/le�-join-vs-le�-outer-join-in-sql-server
[6] Ratnesh Litoriya and Anshu Ranjan. 2010. Implementation of Relational Algebra

Interpreter using another query language. 2010 International Conference on Data
Storage and Data Engineering 1, 1 (February 2010), 24–28. DOI:h�p://dx.doi.org/
10.1109/DSDE.2010.33

[7] Oracle Technology Network. JavaFX library. Oracle Technology Network.
h�p://www.oracle.com/technetwork/java/javase/downloads/index.html

[8] Oracle Technology Network. JavaFX Scene Builder. Oracle Technol-
ogy Network. h�p://www.oracle.com/technetwork/java/javase/downloads/
javafxscenebuilder-info-2157684.html

[9] Oracle Technology Network. JDBC API. Oracle Technology Network. h�ps:
//docs.oracle.com/javase/8/docs/technotes/guides/jdbc/

[10] TutorialsPoint. Relational Algebra. TutorialsPoint. h�ps://www.tutorialspoint.
com/dbms/relational algebra.htm

[11] TutorialsPoint. SQL SELECT �ery. TutorialsPoint. h�ps://www.tutorialspoint.
com/sql/sql-select-query.htm

http://dbis-uibk.github.io/relax/
https://github.com/camdenre/equation-editor
http://dx.doi.org/10.1109/TSE.1985.232223
http://dx.doi.org/10.1109/TSE.1985.232223
http://www.h2database.com/html/main.html
http://stackoverflow.com/questions/406294/left-join-vs-left-outer-join-in-sql-server
http://stackoverflow.com/questions/406294/left-join-vs-left-outer-join-in-sql-server
http://dx.doi.org/10.1109/DSDE.2010.33
http://dx.doi.org/10.1109/DSDE.2010.33
http://www.oracle.com/technetwork/java/javase/downloads/index.html
http://www.oracle.com/technetwork/java/javase/downloads/javafxscenebuilder-info-2157684.html
http://www.oracle.com/technetwork/java/javase/downloads/javafxscenebuilder-info-2157684.html
https://docs.oracle.com/javase/8/docs/technotes/guides/jdbc/
https://docs.oracle.com/javase/8/docs/technotes/guides/jdbc/
https://www.tutorialspoint.com/dbms/relational_algebra.htm
https://www.tutorialspoint.com/dbms/relational_algebra.htm
https://www.tutorialspoint.com/sql/sql-select-query.htm
https://www.tutorialspoint.com/sql/sql-select-query.htm

Relational Algebra Translation Application CSCI 440, 2017, Fall 2017, Tacoma, WA USA

[12] TutorialsPoint. SQL Using Joins. TutorialsPoint. h�ps://www.tutorialspoint.com/
sql/sql-using-joins.htm

[13] Universidad Nacional Costa Rica: Escuela de Informatica 2013. RAT: Relational
Algebra Translator. Universidad Nacional Costa Rica: Escuela de Informatica.
h�p://www.slinfo.una.ac.cr/rat/rat.html

https://www.tutorialspoint.com/sql/sql-using-joins.htm
https://www.tutorialspoint.com/sql/sql-using-joins.htm
http://www.slinfo.una.ac.cr/rat/rat.html

	Abstract
	1 Introduction
	2 Project Background
	2.1 Relational Algebra
	2.2 Structured Query Language (SQL)
	2.3 GUI

	3 Previous RA to SQL Research
	3.1 Related Applications

	4 Implementation and Architecture
	4.1 Parser
	4.2 Database Connection
	4.3 User-Application Interaction
	4.4 Interactive Equation Editor
	4.5 Equation Editor Usage
	4.6 General Architecture

	5 Evaluation, Results, and Analysis
	5.1 Application Development Process
	5.2 Accuracy Evaluation - Test Cases

	6 Discussion
	6.1 Project Significance
	6.2 Project Difficulties

	7 Future Work
	8 Conclusion
	9 Acknowledgements
	A GUI
	B Whiteboard
	C Code
	References

