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Abstract— Biological organisms are thought to possess traits

that facilitate evolution. The term evolvability was coined to

describe this type of adaptation. The question of evolvability

has special practical relevance to computer science researchers

engaged in longstanding efforts to harness evolution as an

algorithm for automated design. It is hoped that a more

nuanced understanding of evolvability inspired by biological

evolution will translate to more powerful digital evolution

techniques. To this end, the relationship between evolvability

and environmental influence on the phenotype was investigated

using digital experiments performed on a genetic regula-

tory model. The phenotypic response of champion individuals

evolved under regimes of direct plasticity, and indirect plasticity

was assessed. The model predicts that direct plasticity and

indirect plasticity decrease and increase the frequency of silent

mutations, respectively.

I. INTRODUCTION

Evolvability is a principal concern to Evolutionary Algo-
rithm researchers and evolutionary biologists alike. Although
many competing definitions of evolvability exist in the liter-
ature, the general consensus is that evolvability stems from
traits that facilitate the generation of viable heritable pheno-
typic variation [1]1 Breaking the concept down, evolvability
stems from:

1) the amount of novel, heritable phenotypic variation
among offspring, and

2) the degree to which heritable phenotypic variation
among offspring is viable,2

The dependence of evolution on these capacities is straight-
forward. Without any heritable variation, evolution would
have no raw material to select from and would stagnate.
Without any viable variation, evolution would select against
all novelty and again stagnate. Hence, systematic evolution-
ary change depends on the production of heritable, novel
phenotypic variation, some of which must not be severely
deleterious. We have established plausible traits that might
facilitate evolution, but several important questions remain

1This statement does not suggest that mutation is nonrandom, a controver-
sial and widely discredited theory referred to biologists as adaptive mutation.
Instead, it is predicated on the notion that the internal configuration of a
biological system (i.e. the developmental process, modularity, degeneracy,
etc.) constrains the outcomes of arbitrary perturbations to that system. It
is hypothesized that biological organisms possess traits that influence the
distribution of phenotypic effects of random mutation.

2This can be thought of in terms of the frequency at which lethal or
otherwise severely harmful mutational outcomes are observed.

unanswered. How does evolvability manifest in biological
organisms (i.e. what traits of biological organisms provide
proximate explanations for the presence of viable heritable
variation among offspring)? Why does evolvability manifest
(i.e. what ultimate mechanistic forces endow biological or-
ganisms with traits that promote evolvability)? Addressing
these two questions gives us a shot at tackling a third: how
can evolvability be promoted in evolutionary algorithms?

It seems likely that evolvability stems from a large and
diffuse set of contributing factors. The establishment – or
rejection – of empirical causal links between theoretical
complications of evolution and evolvability is a key research
goal in the field; this type of inquiry will determine the
complexity of a model necessary to account for evolution
as observed in biological history and how complicated of a
model is necessary to realize digital evolving systems with
performance akin to their biological counterparts.

To this end, this research aims to investigate the relation-
ship between environmental influence on the phenotype and
evolvability. It is hypothesized that organisms evolved under
different regimes of environmental influence on the pheno-
type will exhibit different phenotypic responses to mutation.
To test this hypothesis, a series of digital experiments was
performed with a genetic regulatory network model. The
gene regulatory network model is analogous to the transcrip-
tion process of a biological cell. In the model, a set of gene
rules acts on a set of chemical concentrations, causing them
to change over time. The gene rules are influenced by the
set of chemical concentrations they act on. Rules may be
activated and deactivated by the absence or presence of a
chemical compound. In the gene regulatory network model,
the gene rules are said to represent the genotype. Through
the interpretation of the gene rules over simulated time, a
phenotype — the end set of chemical concentrations — is
developed. In the context of the evolutionary process, the
phenotype is evaluated to determine the fitness of a gene
regulatory network. The particular gene regulatory network
model employed in this study was inspired by the model
employed in [2]. This model was originally developed in
[3].

Gene regulatory networks were evolved under four
regimes:

1) direct plasticity, where stochastic noise was introduced
into the development process (Figure 1),
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Fig. 1. A graphical depiction of the experimental scheme employed to
investigate the relationship between direct plasticity and evolvability.

Fig. 2. A graphical depiction of the experimental scheme employed to
investigate the relationship between indirect plasticity and evolvability.

2) indirect plasticity, in which alternate environmental
conditions indicate which of several alternate criteria
phenotypes will be evaluated against (Figure 2),

3) combined indirect-direct plasticity (Figure 3), and
4) control conditions (Figure 4).

To assess the impact of these experimental conditions on
evolvability, the response to mutation of champion indi-
viduals from populations evolved under each experimental
condition was assessed. Specifically, the frequency of three
mutational outcomes was assessed:

1) silent mutation (mutation which is not phenotypically
expressed),

2) lethal mutation (mutation which leads to a failure to
develop a phenotype; in terms of the gene regulatory
network model, this refers to mutations which cause
the set of chemical concentrations to fail to converge
after 500 applications of the set of gene rules),

3) non-lethal phenotypically expressed mutation (non-
lethal mutation which leads to observable phenotypic
effects).

II. BACKGROUND AND RELATED WORK
A. The Evolutionary Algorithm

At the genesis of modern computing, the 1950s, re-
searchers began to apply advancing computational capabil-
ities to investigate and test models of biological evolution.

Fig. 3. A graphical depiction of the experimental scheme employed
assess the relationship between combined direct and indirect plasticity and
evolvability.

Fig. 4. A graphical depiction of the control scheme used to assess baseline
evolvability in the absence of plasticity.

Very quickly they realized the potential of virtual evolution
to achieve other ends, setting into motion a line of research
that has since blossomed into the field of evolutionary algo-
rithms (EA) design. These algorithms, which use mechanics
inspired by biological evolution to evolve novel solutions
to a wide array of problems, share a generally consistent
basic methodology. The process begins with a population of
randomly generated solutions. In a generation-based loop, an
elite subset of the population is selected for their fitness (their
quality as a solution), subjected to random changes, and
recombined with each other to form the next generation. The
cycle repeats for as many iterations as desired, and fitness
tends to increase with each iteration. Figure 5 provides a
graphical overview of this process.

When discussing evolutionary algorithms (as well as their
biological counterpart) an important distinction is drawn
between phenotype and genotype. Phenotype refers to the
characteristics of an individual that interact with its environ-
ment to determine its fitness. In biology, the physical form of
an organism (i.e. its body) is the phenotype. In evolutionary
algorithms, the phenotype refers to the characteristics of
an individual that are evaluated during selection. Genotype
refers to information that is used to determine the phenotype
that is passed from generation to generation. In biology,
a DNA sequence serves as the genotype. Although many
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Fig. 5. Evolutionary algorithms traditionally operate in a generation-based
loop that, over the course of many iterations, gradually refines a population
of candidate solutions, initialized with randomly-generated individuals, to
generate increasingly fit individuals, individuals that provide an increasingly
satisfactory solution to a particular problem. At the start of each cycle of
the loop, individual solutions are generated from a population of genotypes.
These solutions are scored by a fitness function, which measures the
performance of the individual as a solution to the problem. Then, the genetic
material of fit individuals are mutated and recombined to create the next
generation of candidate individuals. Once a predefined stopping criterion is
met, usually a maximum number of generations or threshold fitness score,
the evolutionary cycle is halted [4].

different genotypic encodings are employed in evolutionary
algorithms, the genotype ultimately boils down to a collec-
tion of digital information.

Researchers and engineers have widely demonstrated the
ability of EA to attack labor-intensive optimization problems
and to discover novel solutions beyond the reach of human
ingenuity [5]. The intervening half century of EA research
has seen diversification of the general evolutionary search
process described above and diversification of the contents
and format of candidate solutions. Today, evolutionary al-
gorithms serve a dual purpose: a tool for biological inquiry
and an algorithm for the automatic design of solutions to
problems.

B. Plasticity

Plasticity refers to environmental influence on the phe-
notype. In biology, environmental and genetic influences,
together, determine the phenotype. Environmental influences
may alter the trajectory of the developmental process or may
otherwise induce phenotype changes in response to environ-
mental stimulus [6]. A conceptual distinction, which will be
central to this investigation, can be drawn between direct
and indirect plasticity. In the first, environmental influence is
exerted directly on developmental or physiological processes.
In the second, environmental signals prompt responses that
are mediated by physiological or developmental systems;
that is, cues from the environment are processed more like
informational signals than coercive physical influence [6].
Although the distinction between a signal and coercive in-
fluence might appear nebulous at first blush, it has important
implications to the design of the proposed experimental

Fig. 6. An illustration of direct plasticity, where phenotypic form is stable
under environmental perturbation.

Fig. 7. An illustration of indirect plasticity, where alternate phenotypes
are expressed based on environmental signals.

regime. At a fundamental level, successful direct plasticity
entails resistance to environmental influence on the pheno-
type while successful indirect plasticity entails strategic am-
plification of environmental influence on the phenotype. Fig-
ures 6 and 7 provide a cartoon illustration of this distinction.
In Figure 6 the cartoon elephant exhibits direct phenotypic
plasticity, developing high-fitness phenotypic forms (which,
in this example, appear nearly indistinguishable to a casual
observer but in general need not be identical) despite variable
environmental influence (i.e. diet, temperature, humidity,
etc.). In Figure 7 the cartoon plant exhibits indirect plasticity,
developing alternate phenotypic forms in response to variable
environmental signals (i.e. light and shadow).

The exact role of phenotypic plasticity in evolution is an
issue of active debate in the evolutionary biology community
[7]. However, several hypotheses describing how phenotypic
plasticity might relate to evolution and evolvability have been
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put forward. Phenotypic plasticity might serve as a kind of
local exploration of the phenotypic search space, allowing
for the immediate expression of a phenotype with increased
fitness and biasing the evolutionary search towards high-
fitness regions of the search space [8]. It is also thought
that the homeostatic mechanisms that mediate an organism’s
interactions with its environment might promote robustness
[9]. Researchers have suggested that phenotypic modularity
might promote plasticity, especially in plants [10], [11].
Thus, selection for plasticity might promote modularity. In
these ways, plasticity might promote useful variability.

Conditional expression of phenotypic traits through plas-
ticity allows for relaxed selection on the genotypic locus
determining those traits. Thus, significant genetic variation
can accumulate at that locus in a population. In a process
known as genetic accommodation, the environmental influ-
ence determining when rarely-expressed phenotypic traits are
expressed can be diminished or erased through sensitizing
mutation; what once was induced via environmental signals
can become constitutive. Such processes have been observed
experimentally via artificial selection [9].

Finally, plasticity might play a role in concert with indirect
genetic encodings, genetic encoding schemes without a di-
rect one-to-one correspondence between genetic information
and phenotypic information. Indirect encodings are biased
towards phenotypic regularity, [12] and plasticity might make
available otherwise inaccessible phenotypic forms (i.e. pro-
viding a mechanism of irregular refinement of highly regular
phenotypic structures generated from indirect encodings).

III. METHODOLOGY

The digital experimental framework used to investigate the
relationship between plasticity and evolvability can be dis-
cussed in terms of three major components that compose it:
the gene regulatory network model employed to perform the
genotype-phenotype mapping, the criteria employed to assess
phenotypic fitness, and the evolutionary algorithm employed
to select on, mutate, and recombine genetic information.
These components will be described in Sections III-A, III-
B, and III-C, respectively. Then, a sketch of the approaches
used to realize the digital experimental framework will be
described in III-D.

A. Gene Regulatory Network Model

The gene regulatory network model employed in this
investigation was inspired by the approach reported in [2]
that was originally developed in [3]. In this model employed
by Wilder et al., the genotype is a directed graph with
k vertices where k is the number of chemical products
considered in the model. Each node in the directed graph
represents a single chemical product. Experiments in [2]
used k = 10. Connections between nodes represent gene
rules. Edge weights may only take on the values -1, 1,
and 0. Respectively, these edge weight values represent a
inhibitory, excitatory, and neutral relationship between the
source chemical product node and the destination chemical
product node. Thus, the genome may be represented by a

Fig. 8. The GRN genotype is a set of if-then rules that acts on a set of
chemical concentrations. The model employed was inspired by [2].

k ⇥ k matrix W where Wij represents the edge weight
between transcriptional regulators i and j.

An individual’s phenotype is the pattern of chemical
product concentrations induced by the action of gene rules on
an initial state S(0). In this model, chemical concentrations
are modeled as simple on/off states. Thus, the set of chemical
concentrations in the model at time step n, S(n), can be
represented as a simple bit vector. To generate the phenotype,
The following update rule is iteratively applied 500 times:

Si(t+ 1) =

(
1 if

Pk
j=1 WjiSj(t) > 0

0 otherwise.

An individual is deemed viable if a fixed point is reached
after 500 iterations (i.e. S(500) = S(501)). If no fixed point
is reached, the individual is deemed inviable and receives a
fitness score smaller than those that would be assigned to all
possible viable individuals. Fitness scoring procedures are
provided in detail in Section III-B.

Several adjustments were made to the model employed
in [2]. Firstly, it was desired to work with a larger set of
chemical concentrations, k = 98, than was employed in [2].
To avoid the O(k2) inflation of information stored in the
genome, an alternate scheme was employed to represent the
set of gene rules. The set of gene rules was implemented
as a set S of 392 individual if-then rules. Each gene rule
represents the action of one chemical product, the antecedent,
on another, the patient. As depicted in Figure 8, the rule R
has three components: the index of a chemical antecedent i
denoted Ra, the index of a chemical patient j denoted Rp,
and a value Rr describing the action of the antecedent on the
patient. As before, Rr may take on the values -1, 1, and 0
to represent inhibitory, excitatory, and neutral relationships,
respectively. Thus, under this scheme each chemical con-
centration is updated according to the concentrations of the
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chemical products at the following timestep as follows:

Si(t+ 1) =

(
1 if

P
R2Ri

Rr ⇥ SR(t) > 0

0 otherwise.

where SR(t) = Sj(t) with j = Ra and Ri = {R | R 2
S and Rp = i }. As before, to generate the phenotype this
update rule is applied 500 times to an initial state S(0) to
generate the final state S(500) and an individual is deemed
inviable if S(500) 6= S(501). To enable sophisticated regu-
latory interactions in the network, it was desired to hide a
portion of the chemical products from direct exposure in the
phenotype. Thus, the phenotype is defined as a subset of the
set of chemical states S(500). In this case, the phenotype was
defined as the end state of chemical products with indices
1 through 49, amounting to half of the chemical products
acted on by the gene rules.

The experimental conditions of indirect and direct plastic-
ity were realized by altering the initial set of chemical con-
centrations the gene regulatory network acts on (i.e. S(0)).
For each experiment, a set of chemical concentrations was
generated at random with each initial chemical concentration
having an equal probability of being set in the on or off state.
In control experiments, this set of chemical concentrations
was employed directly as S(0), remaining absolutely con-
stant throughout each evolutionary run. The control scheme
is depicted in Figure 4. In direct plasticity experiments, a set
of chemical concentrations is similarly generated. However,
at the outset of each individual development process, random
changes are made to this initial set of chemical concentra-
tions to form S(0) for that individual development process.
With probability P , each chemical concentration is randomly
reassigned with equal probability to the on or off state.
The parameter P , which may range between 0 and 1, thus
controls the severity with which environmental noise affects
the developmental process. The value P = 0.2 was used. As
in [13], individual fitness was determined as the mean fitness
score of several developmental runs. In this case, 10 repeat
evaluations were performed. This direct plasticity scheme is
depicted in Figure 1.

In the indirect plasticity scheme, a distinct pair of sets
of chemical concentrations are generated as in the control
scheme. A distinct pair of fitness criteria are also generated
as discussed in Section III-B. One fitness criteria, termed
the primary objective, is paired with one set of chemi-
cal concentrations and the second fitness criteria, termed
the secondary objective, is paired with the other set of
chemical concentrations. In this scheme, the development
process performed twice, with S(0) seeded once by each
set of chemical concentrations. The phenotypes generated
are evaluated according to the fitness criteria corresponding
to the set of chemical concentrations used as S(0). Indi-
vidual fitness is assessed as the mean fitness, weighted by
a parameter W representing the proportion of fitness deter-
mined by performance under the secondary environmental
condition/objective pair. The value W = 0.2 was used. This
indirect plasticity scheme is depicted in Figure 2.

Finally, combined indirect and direct plasticity was real-
ized by combining indirect and direct treatments of S(0).
A weighted set of two environmental condition/objective
pairings exposed to random perturbation of the initial state
was employed. The parameters W = 0.33 and P = 0.2
were used. Five repeat evaluations were performed for each
baseline initial condition evaluated. The combined indirect
and direct plasticity scheme is depicted in Figure 3.

B. Fitness criteria

To study evolvability, it is desirable to avoid a direct
correspondence between phenotypic distance and fitness. Put
more directly, it is desirable to work with fitness criteria
where small phenotypic changes may on occasion result
in significant fitness consequences and large phenotypic
changes may on occasion result in slight fitness conse-
quences. Fitness consequence and magnitude of phenotypic
change are necessarily correlated to some extent, but in a
scheme without direct correspondence between these values,
the effect of mutation in terms of the two major dimensions
of evolvability, the generation of phenotypic novelty and
phenotypic viability under mutation, can be teased apart to
some degree [1]. Thus, in the context of this research it
was desired to avoid determining fitness via the hamming
distance d between an individual’s gene expression profile
and a target profile as was performed in [2].

Instead, fitness was measured by taking the phenotype
as the initial state of a cellular automata simulation. The
fitness score is defined as the value of certain metric assessed
from the set of states generated by the cellular automata
simulation (discussed below). It was determined that such
a scheme would provide the desired indirect relationship
between fitness consequence and magnitude of phenotypic
effect of mutation. In this case, the set of cellular automata
rules known as Conway’s game of life was employed [14].
The phenotype generated via the gene regulatory network,
a set of on/off states, were arranged into a two dimensional
grid. In this case, the grid had dimensions 7⇥ 7. The series
of grid states G = {g1, g2, g3 . . . g30} resulting from 30
sequential applications of Conway’s game of life rules were
recorded. A cutoff parameter 1 < C < 30 defines a particular
fitness criteria. Fitness is assessed from the ratios of live
cells (grid tiles in the active state) to dead cells (grid tiles
in the inactive state) observed in the grid states preceding
and following the cutoff time coordinate. Fitness is thus
calculated as,

Pn<C
i=1 L(gi)

C
�

Pn<30
i=C L(gi)

30� C

where L(g) represents a count of the live cells present in
Conway grid state g. Under this scheme, a phenotype from
which a high density of live cells is observed prior to the
cutoff time coordinate and a low density of live cells is
observed following the cutoff time coordinate will enjoy high
fitness. Note that the fitness is normalized to fall strictly in
the range [�1, 1]. Thus, with a fitness value of �1 assigned
to non-convergent individuals, convergent individuals will
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enjoy a selective advantage against non-convergent individ-
uals. The ability to readily define alternate fitness criteria
is essential to this research (i.e. to experimentally realize
indirect plasticity). Adjustment of the cutoff parameter C
provides an avenue to this end.

C. Evolutionary Algorithm

Selection, mutation, and recombination of genetic material
was performed with the Distributed Evolutionary Algorithms
in Python (DEAP) framework [15]. A population size of
50 individuals was employed. At the outset of each gen-
eration, each available space in the population was filled
by tournament-style selection of the most fit individual
among a randomly selected group of five individuals. This
procedure was performed using DEAP’s selTournament
tool. Exchange of genetic material via two-point crossover
was then performed among members of the new generation
with DEAP’s cxTwoPoint tool with crossover between
each pairing occurring with probability 0.5. Finally, with
probability 0.2, mutation was applied to each member of the
new generation. If an individual was selected for mutation,
the number of point mutations the individual experienced
was drawn from a binomial distribution with n = 392, the
number of rules present in the genome, and p = 0.1. For
each point mutation, a rule was selected at random from the
set of 392 rules that compose the genome. Mutation was
performed by selecting a random rule from an individual’s
genome, selecting a component of the rule at random with
equal probability (i.e. Ra, Rr, or Rp), and reassigning the
rule component to a selection drawn with equal probability
from the set of valid values for that component.

D. Implementation

The digital experiments performed required significant
computational power, especially in light of the replicate trials
necessary to establish statistical significance. Fortunately,
evolutionary algorithms are amenable to massive paralleliza-
tion. Fitness evaluations of individuals in a population can
be readily performed in parallel. In order to exploit parallel
processing power, experiments were performed on remote
clusters. Even with this parallel processing power, perform-
ing replicate experiments required the better part of a day.
The software with which simulations were performed was
structured as a Python package. This software package was
written and tested on a local machine, then installed on
a remote cluster. This development scheme, which strictly
separated code implementing the model from code written
to perform experiments with the model, allowed the model to
be kept under strict version control. Computational tests were
performed and recorded using Jupyter notebooks hosted on
the remote cluster. These notebooks provided a convenient
mechanism to catalog and annotate code written to perform
experiments and results from those experiments, both in
the form of printed console output and graphical output
generated via Pyplot. Data from computational experiments
was saved on the remote clusters using the Pickle Object
Serialization tool. Jupyter notebooks, which are served as

HTML documents, are readily accessible from a local ma-
chine.

IV. RESULTS

Results from experiments investigating the relationship
between direct, indirect, and combined plasticity are re-
ported in Sections IV-A, IV-B, and IV-C. To summarize,
the emergence of gene regulatory networks exhibiting direct
and indirect plasticity was observed in evolutionary trials
where environmental influence on the phenotype exerted
selective pressure for these traits. Champion gene regulatory
networks from evolutionary trials selecting for direct plastic-
ity exhibited a higher incidence of silent mutation compared
to champion gene regulatory networks evolved in control
trials. Champion gene regulatory networks from evolutionary
trials selecting for indirect plasticity exhibited a higher
incidence of phenotypically-expressed mutation and a lower
incidence of silent mutation compared to champion gene
regulatory networks evolved in control trials. Both of these
experimental treatments appear to leave the rate of lethal
mutation unaffected. Champion gene regulatory networks
from evolutionary trials selecting for both indirect and direct
plasticity exhibited a higher incidence of phenotypically
expressed mutation.

A. Direct Plasticity

The capacity of the gene regulatory networks modeled
herein to exhibit direct plasticity — the ability to consistently
develop high-fitness phenotypes despite environmental noise
— was confirmed by comparison of the fitness achieved
by champion individuals under exposure to environmental
noise to a control group. It was confirmed that champion
individuals from the direct plasticity regime achieved fitness
comparable to individuals evolved under a control regime.
Thus, it was concluded that the gene regulatory networks
evolved were capable of coherent function despite some
environmental noise.

Figure 9 compares the evolvability signature of champion
individuals evolved with and without environmental pertur-
bation. The evolvability signature co-visualizes the pheno-
typic and fitness outcomes of mutation. Phenotypic novelty
resulting from mutation, measured via the hamming distance
between the phenotype expressed prior to and following
mutation, is plotted on the y axis. Relative fitness of the
phenotypes expressed prior to and following mutation is
plotted on the x axis. The darkness of each tile represents
the frequency of mutational outcomes that fall into that
bin. Silent mutations occur at the top right of the diagram,
at the juncture of 0 novelty and 0 fitness consequence.
Lethal mutations are clustered at the bottom left of the
evolvability signature. Compared to the control evolvability
signature, an overall reduction in the frequency of mutation
with significant phenotypic and/or fitness consequences is
observed under the direct plasticity regime.

This observation is accounted for in Figure 10, which
compares the relative frequency with which silent, lethal,
and phenotypically-expressed outcomes are observed from
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Fig. 9. Evolvability signatures of champion evolved without initial
plasticity (P = 0) (top) and with initial plasticity (P = 0.2). Figure after
[1].

champion individuals evolved under the control and direct
plasticity regimes. A statistically significant increase in the
incidence of silent mutation is observed under the direct
plasticity regime. This increase in the incidence of silent
mutation appears to correspond to slight decreases in both the
rates of lethal mutation and phenotypically expressed non-
lethal mutation.

B. Indirect Plasticity

The capacity of the gene regulatory networks modeled
herein to exhibit indirect plasticity — the ability to si-
multaneously achieve high-fitness to a set of two of en-
vironmental condition/objective pairings — was confirmed
by comparison of the fitness scores for each environmental
condition/objective pairing between champion individuals
evolved with fitness determined exclusively via the primary
condition/objective pairing and those evolved with fitness
determined by both primary condition/objective pairings.
As expected, it was found that individuals exposed to
the secondary condition/objective paring significantly out-

Fig. 10. Comparison of mutational outcome frequencies for champions
evolved with and without initial state perturbation.

Fig. 11. Comparison of objective performances of champions evolved
with only primary condition/objective pair versus with both primary and
secondary condition/objective pairs.

performed individuals that were not with respect to that
condition/objective pairing. Champion individuals evolved
exclusively to satisfy the primary condition/objective pairing
exhibited statistically significant greater performance under
the primary condition/objective pairing compared to individ-
uals evolved to satisfy both condition/objective parings. Nev-
ertheless, the performance of champion individuals evolved
to satisfy both condition/objective pairings at the primary
condition/objective pairing was roughly comparable to that
of champion individuals evolved exclusively to satisfy the
primary condition/objective pairing; individuals evolved to
satisfy both condition/objective pairings exhibited an obvious
capacity to satisfy the primary condition/objective pairing.
These results are presented in Figure 11. It was concluded
that the gene regulatory networks evolved in this model
were capable of exhibiting indirect plasticity, simultaneously
providing good performance on multiple condition/objective
pairings.

Figure 12 compares evolvability visualizations of cham-
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pion individuals evolved under control conditions, where
selection took place exclusively for the primary condi-
tion/objective pairing, to individuals evolved to simultane-
ously satisfy both condition/objective pairings. These vi-
sualizations were generated by measuring performance ex-
clusively in terms of the primary condition/objective pair-
ing. These visualizations are comparable to the evolvability
signatures provided in Figure 9, but track absolute fitness
on the x axis in lieu of relative fitness. This change was
made to ensure a clear comparison of the outcomes of
mutation between champion individuals evolved exclusively
under the control conditions, which enjoy slightly greater
fitness in terms of the primary condition/objective pairing,
and champion individuals evolved to simultaneously satisfy
both condition/objective pairings. A lower right hand region
is outlined in red on these visualizations. This region, the
exact bounds of which were chosen arbitrarily, represents
mutational outcomes in which mild fitness consequences
are observed despite nontrivial phenotypic novelty. Such
mutational outcomes are desirable in terms of evolvability.
Preliminary analysis suggests that, despite overall relatively
lower fitness of champion individuals, champion individuals
evolved under an indirect plasticity regime more frequently
generate mutational outcomes that fall into this region. More
sophisticated statistical investigation would be necessary to
confirm this finding.

Figure 13 compares the relative frequency with which
silent, lethal, and phenotypically-expressed outcomes are
observed from champion individuals evolved under control
and indirect plasticity regimes. It was found that evolution
under the indirect plasticity regime induces a statistically-
significant decrease in the frequency of silent mutation
and a corresponding statistically-significant increase in the
frequency of phenotypically-expressed non-lethal mutation.
The frequency of lethal mutation was not obviously affected.

C. Combined Plasticity

Similar to validation of the capacity of evolved gene
regulatory networks to exhibit direct and indirect plasticity
(reported in Sections IV-A and IV-B), the capacity of evolved
gene regulatory networks to exhibit both direct and indirect
plasticity simultaneously was confirmed. Specifically, it was
found that champion individuals evolved under the combined
plasticity regime exhibited comparable fitness relative to
champion individuals evolved under the control regime in
terms of the primary condition/objective pairing. Figure 13
compares the relative frequency with which silent, lethal, and
phenotypically-expressed outcomes are observed from cham-
pion individuals evolved under the control and combined
plasticity regimes. It was found that evolution under the
combined plasticity regime induces a statistically-significant
decrease in the frequency of silent mutation and a corre-
sponding statistically-significant increase in the frequency
of which phenotypically-expressed non-lethal mutation is
observed. Although not strong enough to merit statistical
significance, this change in the frequency of phenotypically-
expressed non-lethal mutation appeared to be accompanied

Fig. 12. Evolvability visualization of champions evolved with only a
primary condition/objective pair (top) and champions evolved with primary
and secondary condition/objective pairs (bottom).

Fig. 13. Comparison of mutational outcome frequencies for champions
evolved with only primary condition/objective pair versus with both primary
and secondary condition/objective pairs.
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Fig. 14. Comparison of mutational outcome frequencies for champions
evolved with only primary condition/objective pair and no initial state
perturbation versus with both primary and secondary condition/objective
pairs and initial state perturbation.

by a corresponding decrease in both the frequency of silent
mutation and the frequency of lethal mutation.

V. DISCUSSION
Experiments reported in Section refsec:results confirm

that environmental influence on the phenotype affects the
outcomes of mutation of champion individuals. These exper-
iments therefore evidence a relationship between phenotypic
plasticity and evolvability. This finding opens questions about
the exact nature of this relationship and, in particular, how
the relationship mechanistically operates.

Evolvability is commonly understood in terms of internal
structural configuration of an evolving system. Work per-
formed by Draghi and Wagner investigating evolvability in
a highly abstract, simplified evolutionary model illustrates
the connection between internal structural configuration and
evolvability [16]. The phenotype in their model is a coordi-
nate in two-dimensional space. Genotypically, individuals are
represented as a pair of vectors. Individuals for which a near
right angle exists between their pair of genotypic vectors are
considered more evolvable compared to individuals for which
these two vectors are near parallel. The near-perpendicular
internal configuration allows for a greater range of pheno-
typic outcomes (i.e. points in two-dimensional space) to be
realized by mutations that affect vector length.

Consideration of how internal structural characteristics
might bridge the gap between environmental influence on
the phenotype and evolvabilitiy can be brought explicitly
into terms of the gene regulatory network model explored
in this paper. It is hypothesized that environmental noise
induced selection for internal structural configurations ca-
pable of mitigating that noise which, in turn, caused an
increase in the frequency of silent mutation. The presence
of alternate phenotypic targets in the context of multiple
condition/objective pairings is hypothesized to have induced
selection for internal structural configurations capable of
facilitating developmental path switching which, in turn,

caused a decrease in the frequency of silent mutation.
The exact nature of these internal structural configurations
remains an open question. The internal configuration of
individuals — the gene regulatory network rules through
which the phenotype is generated — can be represented as a
directed graph. Preliminary analysis of various graph metrics
— the overall occurrence of different types of connections
(i.e. inhibitory, excitatory, and neutral) between nodes, the
distribution of connection counts between each node, the
number of isolated subgraphs present etc. — did not reveal
any obvious differences in the graph structures characteristic
of champions evolved under different experimental regimes.
A more comprehensive effort to characterize the graph
structure of champions evolved under different experimental
regimes, in particular to visualize the gene regulatory graphs
of individual champion solutions as well as the aggregate
structural characteristics of a set of champion solutions
evolved under the same experimental regime, might shed
light on internal structural configurations that promote direct
plasticity and indirect plasticity.

A key question to address is how the internal structural
configurations that promote direct and indirect plasticity
relate to one another. Direct and indirect plasticity may stem
from vastly different aspects of internal structural configu-
ration, identical aspects of internal structure configuration
(likely in opposite polarities), or some intermediate between
the two. The frequency of mutational outcomes, reported in
Figure 14, shed some light on this question. Simultaneous
selection for direct and indirect plasticity does not seem
to result in a simple “canceling out” of the evolvability
characteristics exhibited by champion individuals selected for
direct and indirect plasticity in isolation. Instead, there is an
increase of the rate at which phenotypically-expressed non-
lethal mutation is observed while the rate of silent mutation
is not strongly affected. This result may suggest that direct
and indirect plasticity stem from different aspects of internal
structural configuration.

VI. FUTURE WORK

As many exciting scientific inquiries do, this investigation
raises as many questions as it answers. Work remains to
be done, both with this particular computational model of
evolution and more broadly. Most pressingly, it is hoped that
continued investigation will shed light on internal structural
characteristics that support direct and indirect plasticity.
It would also be worthwhile to attempt to demonstrate a
situation in which search with plasticity outperforms search
without in terms of the absolute fitness of champion solutions
evolved. More broadly, it would be fruitful to perform similar
experiments with a more directly biologically-inspired model
or even in vivo.

VII. CONCLUSION

The relationship between evolvability and environmental
influence on the phenotype was investigated using digital
experiments performed on a genetic regulatory model. The
capacity of the model to accommodate the emergence of
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direct, indirect, and combined plasticity in evolved genetic
regulatory networks was confirmed. The phenotypic response
of champion individuals evolved under regimes of direct
plasticity and indirect plasticity was assessed. The model
predicts that direct plasticity and indirect plasticity decrease
and increase the frequency of silent mutations, respectively.
The model also predicts that combined plasticity induces an
increase in the frequency of phenotypically-expressed non-
lethal mutation without having a noticeable effect on the
observed frequency of silent mutation.

These experimental results confirm the existence a re-
lationship between phenotypic plasticity and evolvability
was confirmed. It is hypothesized that this relationship is
mediated by internal structural characteristics of the evolved
gene regulatory networks. Specifically, it is postulated that
environmental influence on the phenotype induces selection
for certain internal characteristics that support direct and/or
indirect plasticity which, in turn, affect the outcome of mu-
tation. The exact nature of internal structural characteristics
that support direct and indirect plasticity remain unknown.
Analysis of the outcome of mutation of champion individuals
evolved under a combined plasticity regime in comparison
to individuals evolved under just a direct plasticity regime
and just an indirect plasticity regime suggests that direct
and indirect plasticity stem from different aspects of internal
structural configuration. Further work is called for to pin
down a structural characterization of the internal charac-
teristics that support direct and indirect plasticity in order
to investigate the hypothesized nature of the relationship
between evolvability and phenotypic plasticity.
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