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ABSTRACT

This paper describes the technical schema created for our senior
capstone project, in which we built software that allows the com-
puter to create music. This is done in Python, taking advantage
of the neural network capabilities provided by the TensorFlow li-
brary. Our system uses a recurrent neural network, utilizing the
advantages of LSTM nodes, to learn the relationships between notes
within classical music. Our system trains on only Bach chorales -
this is because chorales are a good learning database since they are
relatively straightforward and simplistic. In the end, the computer
successfully made music that distantly resembles Bach.

KEYWORDS

Bach, Long Short-Term Memory, Machine Learning, Music, Python,
Recurrent Neural Network

1 INTRODUCTION

Johann Sebastian Bach is a name known even to those for whom
classical music is nothing more than a lullaby. Bach was in the van-
guard of the shift from modal music, a style that predated chordal
harmony and was focused more on a single melody (call to mind
the chanting monks in Monty Python and the Holy Grail), to tonal
music. Tonal music is a system in which the song progresses from
one chord to the next based on a set of rules which, when followed,
produces music that sounds so natural that the system is ubiquitous
to this day. It was Bach who identified the relationships between
chords that make the rules work, and nowhere is this insight more
apparent than in the collection of songs, specifically chorales, that
he wrote for the church.

The idea of generating music using a neural network is not a
brand-new one, but our research only yielded a handful of actual
implementations, the best-documented of which was generating
classical piano music. It was using a set which included, unfortu-
nately, compositions of the early 20th century, a time period during
which classical composers were undergoing what can only be called
a rebellious phase, and doing the musical equivalent of painting
their rooms black and dyeing their hair vibrant colors. The resulting
dissonance in the data set makes it difficult to ascertain whether
the network had successfully learned to generate classical piano
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music and tried to incorporate the avant-garde movements in its
results, or if its training was only partially successful, resulting in
discordant missteps.

Bach chorales are, for a myriad of reasons, the ideal material for
a stepping stone in machine learning. Because they abide so cleanly
by the harmonic rules Bach set out, deviation is trivially easy to
isolate. And given that they only have four voices (meaning that
only four notes can be played at one time), they are much easier to
work with than piano music, which can have as many as 10. Not only
that, but Bach wrote hundreds of them. So, by choosing to train on
Bach chorales, we can train on a relatively large collection of songs
of standardized style, tonality, and nature. Thus, our results clearly
illustrate how well our network has learned from the training set.

2 BACKGROUND

Music as an art form has been with us as a species for longer than
cultural memory serves, but computers and related technology are
a well-recorded, not as artistic concept from recent history. Melding
such technology with art is an undertaking that seems to captivate
us. From the music box to grand structures such as the Wintergatan
marble machine[14], to even sequencers, technology has helped us
capture a sound and manage to make it even more beautiful than it
once was. The pattern so far has been that we are the composers and
simply utilize the power of the computer. But what of computers
and their mental power that may rival ours? Can a computer surpass
not just our computational prowess, but also our artistic side?

There have been a plethora of projects revolving around com-
puting creativity. The range of ability and discussions of the "cre-
ativity" itself are just as vast. From creating images similar to fa-
mous painters to composing like the finest musician, we’ve tried the
gamut. But our project is not so much a question of if computers can
be creative as much as it is a question on if they can emulate what
we have done. Much of the creativity found in computing relies on
neural networks, which may prove effective in finding the patterns
that occur in creation[6]. These networks are an attempt to recreate
the activities of the human brain as we know them; that is, our
pattern recognition and ability to learn through reinforcement[9].
These networks are layers of nodes strung together like neurons,
passing info through one another. They possess activation functions,



which evaluate weights passed into the nodes[9]. These functions
evaluate and pass on a judgment to the next nodes. Eventually, once
this info has been put through this lengthy process, it spits out a
choice: a number between 1 and 0. This binary choice is weighted
as a “"do or do not" evaluation depending on its proximity to 1 or 0.
With this deceptively simple (alternatively deceptively confusing)
framework, it is impressive what can be done.

Google has created two well-known projects, Deep Dream and
Magenta [5]. These computing powers run images and sounds
through neural networks to find that "Spark"[6] of creativity within
the patterns it picks up. With Deep Dream, more of the creativity
that is done turns into seeing new pictures within the whole. The
goal for Magenta, however, is to more accurately emulate classical
music creation. Magenta uses Google’s proprietary neural network
engine, TensorFlow, in an attempt to see if the network can produce
novel creations that perhaps can also tell a story just as Bach once
did[5].

Daniel Johnson has done a similar music project, where he has
taken the idea to a further degree to see if patterns are more appar-
ent given more input in terms of patterns in time and patterns in
surrounding notes. His network zeros in on finding time and note
patterns and matching patterns between them[8]. What Johnson
hoped to accomplish was a network that could pick up on time
signature and chord creation[7]. His project found success in this
parallel processing of notes and time[8].

Our project adds support to Johnson’s work. While his implemen-
tation finds notes and patterns with relative efficacy, our machine
more accurately imitates its teacher. We decided to implement John-
son’s effective parallelism and tweak it to produce something more
coherently tied to Bach’s Chorale styles.

Our final choice was to use Python and TensorFlow to implement
this neural network. There was a brief period at the beginning of
the project where we attempted to use Java and Simbrain, but an
unresolved bug in the Java MIDI Sequencer stymied our forays
in that direction. Python and TensorFlow were not themselves
without issues, but the hurdles we encountered with them were
surmountable.

3 IMPLEMENTATION

Our project is implemented using Google’s neural network soft-
ware, TensorFlow. TensorFlow is an open source library that is
maintained by Google[2] for numerical computation using data
flow graphs and learning algorithms[12]. TensorFlow works with
two major building blocks: tensors, which are essentially arrays
of information, and operations, which are any mathematical cal-
culation that could be done on a Tensor. Using tensors and ops,
TensorFlow allows the programmer to computationally build graphs
to model the behavior of an algorithm. In terms of Neural Networks,
TensorFlow uses this graph to create a set of costs associated with
each input - these costs are adjusted during the training process.
After training is complete, the programmer can use those costs for
some other operation, be it mathematical or generative.

In our case, we are using a Recurrent Neural Network with Long
Short-Term Memory nodes, provided by TensorFlow’s MultiRNN-
Cell and LSTMCell classes[10]. A recurrent neural network differs

from a normal neural network by taking the output from the previ-
ous layer and feeding it back into the network alongside the inputs.
This looping process allows the network to pick up on relation-
ships that it wouldn’t otherwise. A Long Short-Term Memory node
allows information to be retained "outside the normal flow of the
recurrent network"[1]. By using these LSTM nodes the network
more accurately trains over many iterations, as it has memory to
fall back on in troublesome situations.

3.1 High-Level Overview

Before we can explain the process of the model, we must give
a high-level overview of the generation process. The general flow
of the system is explained in the following figure. There are three
major pieces here that need explanation; the song dictionary, what
cPickle is doing, and why we are using JSON.
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The song dictionary is relatively straightforward - using a Python
2.7 script, we are converting every MIDI chorale we have in our
database into a "state matrix" that defines the song. Then, those state
matrices are packaged into what we are calling a song dictionary.
We need the MIDI files in a format that Python and TensorFlow can
work with, which is why we are converting them to state matrices.
By putting them all in a python dictionary, we will be able to create
batches (discussed later) from which the network will learn much
easier.

After the dictionary is created, we need to feed it to the network
for use in batching. However, there is one major problem here;
the best library for working with MIDIs is written in Python 2.7
while TensorFlow exists within Python 3.5. Because of this, we need
to move the dictionary from 2.7 into 3.5. In order to achieve this
transfer, we use a Python serialization module called cPickle. The
"pickling" process produces a file over 4 million lines long, which
is now usable by our TensorFlow model.

After TensorFlow has done its training and then generating the
song, we need to turn the resulting state matrix back into a MIDI
file. This time, we are forced to go from Python 3.5 into Python 2.7.
To do so we use JSON. Once that is done, we use another Python
2.7 script to turn the song back into a MIDI file, and voilA#! The
computer has created music.

3.2 State Matrix to MIDI and Vice Versa

One of the more major setbacks that occurred over the course
of this project was the question of how to handle the MIDI files.
After the initial Java debacle was put to rest, we were still not
out of the woods; the best package by which we could process
the MIDI files was called python-midi. It was remarkably well-
documented, complete with not only the general idea of how MIDI
files functioned, examples of how to build them from scratch using
this package. The only issue was that the package was written in



Python 2.7, as was mentioned earlier, while TensorFlow operates in
Python 3.5. This led to a series of intermediate steps as we converted
the MIDI to a state matrix in Python 2.7, stored it as a cPickle file,
which could be processed by TensorFlow in Python 3.5, and then
reversed the process with JSON on the state matrix that the network
put out such that we could use it to create the MIDI file that was
our final product.

The state matrix is a 3D array of shape (n, 128, 20), where n is
the length of the song in ticks (the lowest resolution of a MIDI
track). We iterate through the ticks in the MIDI track, and for every
four ticks (for those among us who are music people, that means
we run through the song at 16th note granularity), we check the
MIDI for one of two events, NoteOnEvent or NoteOffEvent. Based
on whether a note is being started or ended, we append [1, 1] or
[0, 0] to the third dimension of the state matrix. The pitch of note
started or ended is determined by the index of the note within the
128-long array 4AS there are 128 possible notes starting with CO0,
so the pitch would be its index away from C0. So it is that the state
matrix has all the information of a MIDI, all in a format that could
be read by anything that could read a text file.

The latter half of the transformations occurs after the network
has generated its own state matrix. Building a MIDI file is slightly
more involved than constructing an array, despite having a struc-
ture not dissimilar to one. According to the documentation, one
must simply append the two different types of event to the track,
concluding in the end of track event, but an attempt at this very
method resulted in a strange, buzzing mess of approximately accu-
rate pitch far removed from the clarity of the inputs. After much
puzzling and many failed attempts, it turned out that, for some
reason, we had to make two lists, one for NoteOn events and one
for NoteOff, and append each to its respective list, and only after
the lists were complete could we iterate through each of them and
append each successive event to the track.

3.3 Idealistic Inputs

Neural networks require well-defined inputs on which to per-
form their operations. We have four separate inputs that we need
to represent; the position, pitchclass, note range, and beat.

The first input is the position. This is relatively straightforward;
we want the network to know what note it is considering at any
one time. Therefore, we give each note a value which the network
can use to represent it and compare it to other note values. Since
we don’t want to reinvent the wheel, position is represented by the
note’s MIDI value (Appendix 9.4).
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The second input is pitchclass. Pitchclass is used to abstract
away the octave component of music. The diagram above shows
the general idea; we see four separate octaves on a keyboard, where
each octave contains 12 distinct notes. However, these 48 notes are
being dumped into 12 labeled “bins”. The idea of pitchclass, then,
is that by consolidating a similar note from across octaves into a
single “bin”, you can reduce the effect that different octaves have on
the network. We do this because the relationships between notes

and chords will always exist, no matter what octave you are in.
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The third input is note range. Note range is used as one would
believe; it represents the notes surrounding any one node so that
the network can get a better understanding for spatial relationships
between notes. The diagram above attempts to represent this, using
an visual approximation of what the input is used for. This idea
came straight from Johnson’s implementation as a way to help
produce chords.

The fourth and final input is beat. The beat is another way to
say “time-step”, and we keep track of this so the network can know
where in a measure it is. This is also relevant when we have to
convert the state matrices back into a MIDI format.

3.4 Actual Inputs

These inputs that we are considering are then used to create
an input vector which can be inserted into our network. A single
note vector was around size 80. Every single note has its own input
vector and we are considering the whole range of midi notes. Every



time-step in the state matrix has 128 notes and we must create a
vector for every note. This process gives us a 2D matrix with 128
rows for our notes and 80 columns for the inputs. Finally, this means
that a given song yields a 3D matrix with dimensions defined by
the length of the song, the 128 notes we are considering, and the
note input vector of size 80 or [length, 128, 80].

Given the size of a song, the size of the input vectors we are
creating, and the amount of vectors just a single time-step in the
state matrix creates, we needed to break up our song into chunks of
input as TensorFlow was running out of memory when presenting a
whole state matrix as input. Therefore we needed to batch our input.
By batching our inputs we decided to only consider subsections
of pieces of songs instead of the whole song itself. In doing so we
made sure to only start our batch on a measure and to process the
whole measure to try to ensure a sense of time within the network.
The length of this batch determines the patterns our network could
potentially pick up in the music. Again we had to try to find a
balance between the length of the batch to recognize patterns within
music and the amount of training time the size introduced into the
network. Shortening the batch resulted in more chaotic music,
while increasing it drastically increased training time. Our final
input vector then is of size [batchlength, numbero fbatchs* 128, 80].

3.5 Network Model Nodes

To completely understand the implementation of our model, we
need to start at the basic building block of a network, which for
us is the LSTM node (Appendix 9.1). It’s important to understand
that every node, regardless of its type, will take an input vector
and output a corresponding vector with activations representing
choices made by that node. Choices here will then differ depending
on the type of node used. LSTM nodes are unique in that they take
two input vectors, one being the current input and the other being
the previous output of that node. Each individual LSTM node has a
set of weights and biases that defined its structure and choices. In
our model we are using just a basic LSTM node that has two input
gates, an activation gate, and an out gate. The input gates decides
which values to update in the incoming vectors, the activation
gate updates the previous output into the current input vector, and
the out gate is a tanh activation function that determines the final
activations given by the node[4]. Every gate has weights and biases
which then get adjusted as the network learns. We also use sigmoid
activation nodes at the end of our network. These nodes just have
weights and biases for an input gate, and their purpose is to scale
the activations into the play probability.

3.6 Model Layers

An individual cell on its own is pretty useless, and therefore it’s
common practice to stack these cells into a layer. In typical feed
forward networks these cells are not connected at all to each other,
rather a node in a layer is connected to nodes in other layers (Ap-
pendix 9.2). LSTM networks follow the same structure however the
nodes are connected to their layer counterparts in time (Appendix
9.3). Typically, and in our case as well, these layers are densely
connected. This means that an LSTM node in a layer connects with
its counterpart in time, as well as with every node in the previous

and next layer of the current time. These connections are what the
gates of our LSTM nodes are using as inputs and outputs.

3.7 Model Implementation

You can then multiply these layers or add more nodes to layers
to get various degrees of training and accuracy. In general, more
layers and nodes mean higher training accuracy, but suffer from
drastically increasing the training time of the network. For our
specific model we use two time layers each with 300 LSTM nodes,
two note layers with 100 and 50 LSTM nodes respectively, and a
finally a layer of two sigmoid nodes that generate the probability
of the note being played.

We start off with our batch, which again is just piece of song
that contains our note information and how that changes in time.
The first time layer will loop through this batch in time sending
its hidden outputs to the next time layer and to the next time-
step. The next time layer does the same once it receives the hid-
den activations of the first time layer. ItAAZs important to note
the time for each layer is considering the same time-step and
does not loop to next time-step until both layers have processed
the input. The result of this process creates a 3D matrix of di-
mensions [batchlength, numberofbatches = 128,300], where 300
is the hidden outputs of the time layer for every single note in-
stead of the input vector now. We restructure this to be of the
shape [128, batchlength * numberofbatches,300], so that we can
now pass this information into the note layer and loop through
the notes instead of time. Before we pass this into the note lay-
ers, we append back on the input vector in addition to the hid-
den outputs. We get a very similar output when compared to
the first layer, [128, batchlength * numbero f batches, 300]. We then
pass these final hidden activations into the sigmoid layer. The sig-
moid layer then outputs a matrix of dimension [128, batchlength
numberofbatches, 2]. Here, the final dimension of two represents
the play probability of the note and articulation probability of the
note. When we are training we go even further. We then compare
these probabilities with the probabilities of the original batch, which
is pretty easy as the original notes are just 1 or 0 is they are being
played or not. When comparing probabilities we can use what is
known as cross entropy to define a cost function.

3.8 Cost Function

TensorFlow has a cross entropy function already defined, how-
ever this function assumes only a single output probability. We need
to compare both the play probability and the articulation probability,
which means we had to manually define a cross entropy function.
We can then pass the cost (given by our cross entropy function)
into an optimizer that TensorFlow provides. There are various opti-
mizers available, the one we settled on was the RMSPropOptimizer,
mostly because of its ability to quickly handle gradient decent in
recurrent numeral networks. The optimizer will go back and adjust
the weights of all the layers and all of the nodes in the network. The
hope is that as the network is given a new batch, the cost function
and the weights will get closer to an accurate prediction.



3.9 Generation

Once the network is done training we then need to actually use
the trained weights to generate new music. The generation process
is extremely similar to our prediction process. However, there are a
few key differences in generating music. The biggest difference now
is that we have no batch size or batch length. Both batch size and
batch length are now one. When starting off the generating process
we pass in a zeroed out matrix given our new dimensions. The
dimensions of our input are now [1,128,80] completely filled with
zeros. It may help to reduce our long periods of initial silence by
appending an actual note structure, but we didnaAZt want to end
up mimicking an actual chorale. This input then gets run through
the network all the way past the sigmoid layer. At this point we then
assume the network considers notes above 50 percent probability
as being played and rounds these to one, and the other probabilities
down to 0. If the play probability gets rounded down to 0 we also
round the rearticulation probability down to 0 as well. If the note
does get played then we need to round the articulation probabilities
up and down from 50 percent as well. Instead of passing the output
here into the cross entropy function we then use this output as a
time-step and append it to the end of a state matrix. We use this
output as the input to the network again to repeat the process,
effectively building a song.

3.10 Tensorboard

Alongside our modeling structure, we took advantage of the
application TensorBoard. TensorBoard is a sub-application to the
TensorFlow API It is a visualizing agent that directly interacts with
the entire code flow, representing data, information pathing, and
other important integrations[11]. What TensorBoard is able to do is
scope out sectors of the code and assign them to a graph. This graph
is able to determine the data flow and the directions it takes across
the breadth of the program. In scoping these variables and data,
they can be given easy to remember names to delineate them from
other sections of the code. For example we were able to cordon
off the tensors for the note and time layers into separate graph
bubbles (Appendix 9.7). Not only that but we could label the sigmoid
activator function applied to our network, the gradient descent
operators, and the saving function which allowed TensorBoard
to create what it calls "embeddings." In addition. One could open
up these graphs and peek into the deeper, though understandably
obfuscated, workings of the system in its entirety (Appendix 9.6).

What the embeddings allowed us to do was learn more about
the network visually. To an untrained eye, the embeddings panel
simply spat out crazy 3D dot graphs, especially earlier in devel-
opment. However, once the system began to fall into place, we
could see better that the results produced were something quite
special. In the embeddings panel there are two relevant tabs we ex-
amined: The principal component analysis(PCA) and t-distributed
stochastic neighbor embedding(t-SNE). With self directed learning
we found these graphs had a lot to tell about our project’s progress,
and about neural networks in general. What the PCA would display
were distributions our data would settle in after being ran through
the network. That is to say, how our datum could be represented
along three axes to illustrate how our notes and time signatures
were being arranged. In some cases they would turn out quite lovely,

Figure 2: (t-SNE) Data finding troughs in the gradient

showing a very strong, discovered, correlation amongst the data
(Figure 1). The t-SNE proved even more interesting, and not only be-
cause it was more engaging to examine. What the t-SNE could show
was the network in motion; we could view a live performance of
the gradient descent in action. In our more simpler data collections,
we could see the data settling into place, finding a preferred action
(Figure 2). Upon closer examination, we could see that this settling
also showed strong correlations amongst the data (Appendix 9.5),



demonstrating that similar data would strongly prefer to act like
its neighbors (similar actions form similar patterns). With more
dutifully trained data, which would run the risk of over-fitting, we
could see interesting graphs showing a more worm-like correla-
tion between small sets of data. This corresponded to the network
learning more stringently and mindfully the patterns it observed.
These strongly correlated sets would produce our characteristic
"Bach Jazz,' with a strong ear for the original patterns, but little
in the way of stringing them together like the original (showing a
novel result, however).

In our project we utilized this application and its functionality
during important milestones to monitor code changes and how
they affected the structure of our project. At various steps in devel-
opment we could see which data, and how much of it, was being
passed where, and operated upon how. Once the programs operated
moreso as intended, we were able to see the fruits of our labor were
not wasted; the machine was learning as intended, and was on
its way to performing something new and exciting. TensorBoard
proved integral to visualizing our project and progress, enhancing
our confidence in our system’s capability. What we also happened
upon was a wonderful visualizer for an outside audience. Where
someone well versed in t-SNE could approximate with ease the
meanings of our data, someone with less specific knowledge could
enjoy a better visual aid to the complex world of neural networks.
They were not only a delight in showing our progress manifest
(while proving entertaining to look at), these visuals could better
help someone else understand our project and goals more easily.

4 EVALUATION

After a series of false alarms (ten-minute silences punctuated
by strange thuds, single individual notes being held for minutes at
a time, and one instance of clangorous senselessness), the neural
network did generate music. Not strange, contemporary, avant-
garde "music,’ but actual, recognizable, tonal music. It did quote
the chorales upon which it was trained (quote meaning to take a
fragment of melody from another song, exactly as it was, and reuse
it), but there is no question that the material we produced was orig-
inal. However, instead of a child of Bach’s chorales, the product of
the network is a cousin at best; while it produces melodies and pro-
gressions present in the source material, the rhythm is completely
different, and some of the harmonies are not at all what one would
expect of 18th century writing. The disparity between the two is
such that we have begun referring to the product as "Bach Jazz,'
because the melody is so very clearly Bach, but played on offbeats
and in syncopations, both of which of which are integral facets to
jazz, and with chords one would only hear in a jazz setting.

The reason for the rhythmic deviation became apparent very
shortly after the fault occurred. The mistake lay in how we selected
the material on which to train the network. The chorales used
were not all in the same time signature. Some were in triple meter,
some in duple, and the network was not taught to distinguish
between the two. So, though it would calculate the probability of
the concurrent and subsequent notes using the same system (the
tonal rules it learned from the training), it would choose between
rhythms that would make sense either in triple or duple time for
each note. This means that, even though the network started a

phrase in duple meter, it could choose to continue it in triple, which
would absolutely lead to the sort of rhythmic confusion that we
received in the output material.
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The reason for jazzy harmonies is not so clear. The best hypoth-
esis we can forward is that since it calculated where each note in a
chord should go on an individual note basis, it failed to consider
the nature of the following chord as a whole. So while there might
be a high probability that a D would be followed by an A and that
a G should be followed by an F-sharp (as we see in the first bar of
the product sheet music), that doesn’t mean that the resulting G
major chord to 2nd inversion V7 G chord progression should make
any sense to a trained musician or in a classical piece. Interestingly
enough, the second chord in the above progression is one that oc-
curs frequently in jazz music, and listening to the full song seems
to show that many such chords are present. So, it is possible that
our probability calculations are such that jazz chords are produced
entirely coincidentally. At the time of writing, this is but conjecture,
and many hours of close reading would be needed to confirm it.

Another possibility is that our batch size was not sufficient to
the task of actually adequately training the network. In the spirit
of scientific inquiry, we attempted a training session with a batch
size of one, and the result was nothing short of a cacophony. It
is certainly a possibility that, even in seriousness, we made the
self-same mistake that we committed on purpose earlier.

The group consensus with regard to the efficacy of our network
and the final results of our project is that it was, for lack of a better
word, a mixed success. We produced music, to be sure, but it was
certainly no Bach chorale, close to a chorale as its quotes may be.
The product was very clearly deeply influenced by the chorales on
which the network was trained, to the extent that there is no portion
that does not harmonically emulate the style, but the rhythms were
not at all representative of the source material. Given the time frame
within which we were operating and the scope of the undertaking,
there is no small measure of pride that we were able to generate
music with such a high degree of harmonic fidelity to Bach’s work,
but this satisfaction is tempered by the vast deviation from the
aforementioned work in terms of time.

5 DISCUSSION

Our implementation, as mentioned, was based on a personal
project by Daniel Johnson. We have discussed our structure in
previous sections; Johnson’s implementation is structured in a sim-
ilar fashion, using a recurrent neural network and LSTM nodes.
However, our implementation differs in three major ways. First off,
Johnson used the neural network library "Theano" to generate the
neural network while we used TensorFlow. While the two libraries
are similar in many regards, TensorFlow offers three major ben-
efits over Theano. Using the free application called TensorBoard,



users can easily visualize their graphs and examine the interactions
within it, as we’ve seen above. This allowed us to verify that the
network seemed to be learning and working correctly. Alongside
that, TensorFlow offers faster compile times than Theano, allowing
faster testing of the system[2]. This was crucial since we were using
this project to learn how to build neural networks. The last benefit
of TensorFlow is that, as beginners, it abstracts away a lot of the
complexities associated with graph construction. This in turn made
our lives a lot easier and allowed us to focus on the larger ideas
associated with the project.

After the use of TensorFlow, the second major difference of
our implementation is our training library and training objectives.
During training, Johnson used "short music segments" of 4/4 piano
music compiled from many various sources[7]. For our training,
we used segments of only chorale pieces composed by Bach. As
discussed, these pieces include four voices maximum and generally
contain a lot of similar structures and chord progressions. Because
of this decision our output ended up sounding a lot more structured,
and nearly met our original goal of producing music like Bach’s
chorales. Johnson’s compositions, on the other hand, sounded more
unstructured but also achieved better diversity. The final major
difference is that, when deciding whether to play a note, Johnson’s
implementation "chooses a number between 0 and 1 randomly, and
if this number is less than the play probability, it chooses to play
the note. If it is greater, it does not"[7]. Our implementation, on the
other hand, always uses 0.5 as the cutoff for if the note is played or
not. This produces some interesting differences. Our compositions
tend to have approximately the same number of notes played at any
one time-step. Johnson’s compositions, on the other hand, ended
up having a range; in some sections there are a lot of notes played
at any one time-step, and in other sections there are very few notes
played.

From all of this, we do not claim that our implementation pro-
duces music better than Johnson’s. Ours is very different and is
more of a supporting example to his work. In addition, it is a great
learning tool because we can examine two similar models working
in similar fashions, but using two different libraries.

6 FUTURE WORK

Pleased though we are with the results of our project, there is
certainly room for improvement. As entertaining as the Bach jazz
was, it was not 100% what we wanted, and thus the rectification of
the factors that lead to the distortions within the output chorale
is a priority. Not only that, there are still occasionally gaps as
long as 5 minutes before any music starts to play in our generated
pieces, and we still do put out the occasional total failure (weird
beeping, strange ticking sounds), so it goes without saying that our
infrastructure is not flawless.

To that end, we will need to separate the datasets we’re using into
chorales in duple and triple time, to test the working hypothesis that
the strange rhythms are due to mixing the two during generation.

Once we can consistently and reliably produce chorales like
those Bach wrote, a whole world of possibilities opens up in terms
of potential applications. The original idea for this project included
some analysis of the chorale the network produced, annotating
sheet music with information as to which rules of tonality were

satisfied by particular important progressions. This would make
an invaluable tool for beginners studying music theory. Not only
that, chorales in general are unparalleled material with which to
teach ensembles to balance (make sure no section covers up an-
other), tune, and play in-time. The trouble with chorales as they
are, however, is that one risks falling into relative complacency due
to their relatively simple nature; it’s much more difficult to bring
oneself to pay attention to the other voices in an ensemble when
one is falling asleep from boredom playing the same line for the
hundredth time. Chorale generation would make finding a new
chorale trivially easy, and thus make effective teaching somewhat
easier as well.

The original goal of the project was to produce an annotated
fugue based on a phrase submitted by the user, which, given the
complexity of fugues, was shown very quickly to be impossible.
Even having transitioned to chorales, we did not have sufficient
time to incorporate user input in the chorale to be generated. The
final (if any iteration of a program such as this could be said to
be final) product of foreseeable future work would be the addition
of this functionality, which would, in our opinions, immeasurably
increase the efficacy of this software as a teaching tool. Instead of
generating the whole chorale at once, and spitting only the final
product out to the user, it would be interesting to show the writing
process in stages; this could manifest itself in producing a set of
annotated sample outputs, perhaps also including some sort of
analytic process that would not only show what made the valid
chorales valid, but also the failings of those that didn’t meet the
standards of strict tonality.

7 CONCLUSION

In the end, we feel that our project was relatively successful. We
have created a recurrent neural network that accurately trains on
a dataset of Bach chorales and is able to correctly predict notes
as they would appear in one of the training pieces. In fact, the
system is generalized enough that we could run it on any correctly-
formatted dataset and the network would run successfully. While
our system has shown problems during the generation process, we
have demonstrated that it works and are positive that with some
effort and more time, we could make it work every time.

While there are a lot of possible extensions to the current code
base, we feel that this project is an accurate representation of the
time we had, what we learned throughout the semester, and what
skills we have developed through the past four years. In fact, we
are very pleased with ourselves - we triumphantly navigated many
hurdles throughout the semester, and were successful in producing
some very interesting music! We know that we will apply much of
what we learned this year in our future ventures.
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9 APPENDIX
9.1 LSTM Chain
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Figure 3: This depicts a chain of LSTM nodes as information
progresses through them[4].

9.2 Feed-Forward Network

Output layer

Hidden lavers

Figure 4: This depicts a feed-forward network, which is the
building blocks for a recursive network[3].



9.3 Recurrent Neural Network

Figure 5: This depicts a recurrent neural network[13].

9.4 MIDI Note Values

o == Note Numbers

clave | e CE D D e F [ FR| G |[|GF| A | A% | B
-1 0 1 2 3 4 B 6 7 8 9 | 10 | 11
0 12 | 13 | 14 | 15 | 16 | 17 | 18 | 19 | 20 | 21 | 22 | 23
1 24 | 25 | 26 | 27 | 28 | 20 | 30 | 31 | 32 | 33 | 34 | 35
2 36 | 37 | 38 | 30 | 40 | 41 | 42 | 43 | 44 | 45 | 46 | 47
3 48 | 49 | 50 | 51 | 52 | 53 | 54 | 55 | 56 | 57 | 58 | 59
4 60 | 61 | 62 | 63 | 64 | 65 | 66 | 67 | 68 | 69 | 70 | 71
5 72 | 73 | 74 | 75 | 76 | 77 | 78 | 79 | 80 | 81 | 82 | 83
6 8 | 85 | 86 | 87 | 88 | 80 | 90 | 91 | 92 | 93 | 94 | 95
7 96 | 97 | 98 | 99 | 100 | 101 | 102 | 103 | 104 | 105 | 106 | 107
8 108 | 109 | 110 | 111 | 112 | 113 | 114 | 115 | 116 | 117 | 118 | 119
9 120 | 121 | 122 | 123 | 124 | 125 | 126 | 127

Figure 6: This chart are all the MIDI note values possible on
a keyboard.



9.5 Closest Neighbors
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Figure 7: Selecting a data point within a t-SNE cloud shows
the closest neighbors. Through all the tests these neighbors
always remained close.

9.6 Deeper Look
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Figure 8: Note module expanded to show contents
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9.7 Final Shape
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Figure 9: The final shape of our graph
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